An integrated environmental and human systems modeling framework for Puget Sound restoration planning

Bob McKane
U.S. Environmental Protection Agency, United States, mckane.bob@epa.gov

Jonathan Halama
U.S. Environmental Protection Agency, United States, halama.jonathan@epa.gov

Paul Pettus
U.S. Environmental Protection Agency, United States, pettus.paul@epa.gov

Bradley Barnhart
U.S. Environmental Protection Agency, United States, barnhart.brad@epa.gov

Allen Brookes
U.S. Environmental Protection Agency, United States, brookes.allen@epa.gov

See next page for additional authors

Follow this and additional works at: https://cedar.wwu.edu/ssec

This Event is brought to you for free and open access by the Conferences and Events at Western CEDAR. It has been accepted for inclusion in Salish Sea Ecosystem Conference by an authorized administrator of Western CEDAR. For more information, please contact westerncedar@wwu.edu.
Speaker
Bob McKane, Jonathan Halama, Paul Pettus, Bradley Barnhart, Allen Brookes, Kevin Djang, Tarang Khangaonkar, Isaac Kaplan, Chris Harvey, Emily Howe, Phillip Levin, Michael Schmidt, and Raphael Girardin

This event is available at Western CEDAR: https://cedar.wwu.edu/ssec/2018ssec/allsessions/369
An integrated environmental and human systems modeling framework for Puget Sound restoration planning

Bob McKane¹, Brad Barnhart¹, Paul Pettus¹, Jonathan Halama¹, Allen Brookes¹, Kevin Djang², Tarang Khangoankar³, Chris Harvey⁴, Isaac Kaplan⁴, Hem Nalini Morzaria Luna⁴, Michael Schmidt⁵, Emily Howe⁶, Phillip Levin⁶

¹U.S. Environmental Protection Agency, and ²CSRA, Corvallis, OR
³Pacific Northwest National Laboratory, Seattle
⁴National Oceanic and Atmospheric Administration, Seattle
⁵Long Live the Kings, Seattle
⁶The Nature Conservancy, Seattle
Puget Sound Basin

Land area: ~13,000 mi²
Water area: ~1,000 mi²
The Salish Sea

Land area: ~42,000 mi²
Water area: ~7,000 mi²

http://staff.wwu.edu/stefan/SalishSea.htm

Inset, previous slide
Puget Sound Land-Water Interactions
25 Vital Signs to help identify whether Puget Sound recovery targets are being met

Puget Sound Partnership
http://www.psp.wa.gov/vitalsigns/
Puget Sound Vital Signs

Water Quantity
- Summer Stream Flows

Water Quality
- Marine Water Quality
- Freshwater Quality
- Marine Sediment Quality
- Toxics in Fish

Healthy Human Population
- Onsite Sewage
- Shellfish Beds
- Outdoor Activities
- Local Foods
- Air Quality
- Drinking Water

Quality of Life
- Sound Stewardship
- Economic Viability
- Good Governance
- Sense of Place
- Cultural Practices

Species and Foodweb
- Chinook Salmon
- Orcas
- Pacific Herring
- Birds

Protect and Restore Habitat
- Estuaries
- Floodplains
- Land Cover and Development
- Eelgrass
- Shoreline Armoring

25 Vital Signs to help identify whether Puget Sound recovery targets are being met

Puget Sound Partnership
http://www.psp.wa.gov/vitalsigns/
PUGET SOUND VITAL SIGNS

<table>
<thead>
<tr>
<th>Water Quantity</th>
<th>Species and Foodweb</th>
<th>Protect and Restore Habitat</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Summer Stream Flows</td>
<td>• Chinook Salmon</td>
<td>• Estuaries</td>
</tr>
<tr>
<td>Water Quality</td>
<td>• Orcas</td>
<td>• Floodplains</td>
</tr>
<tr>
<td>• Marine Water Quality</td>
<td>• Pacific Herring</td>
<td>• Land Cover and</td>
</tr>
<tr>
<td>• Freshwater Quality</td>
<td>• Birds</td>
<td>Development</td>
</tr>
<tr>
<td>• Marine Sediment Quality</td>
<td></td>
<td>• Eelgrass</td>
</tr>
<tr>
<td>• Toxics in Fish</td>
<td></td>
<td>• Shoreline Armoring</td>
</tr>
<tr>
<td>Healthy Human Population</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Onsite Sewage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Shellfish Beds</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Outdoor Activities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Local Foods</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Air Quality</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Drinking Water</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quality of Life</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Sound Stewardship</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Economic Viability</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Good Governance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Sense of Place</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Cultural Practices</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Integrated terrestrial-marine models are needed to:

- Synthesize decades of terrestrial & marine data
- Identify comprehensive recovery solutions across habitats & scales...
Puget Sound Systems Modeling Framework

Terrestrial
- Hydrology
- Biogeochemistry
- Fish habitat, pop.

Marine
- Ocean circulation
- Biogeochemistry

Marine Food Web
- Diet
- Movement
- Mortality factors

Nutrients → **Toxics** → **Saltwater** → **Salmon**
- Adult
- Juvenile

Toxics → **Nutrients** → **Terrestrial** → **Fish habitat, pop.**
Puget Sound Systems Modeling Framework

Terrestrial
- Hydrology
- Biogeochemistry
- Fish habitat, pop.

Marine
- Ocean circulation
- Biogeochemistry

Marine Food Web
- Diet
- Movement
- Mortality factors

Salish Sea Model
http://salish-sea.pnnl.gov/

Atlantis Model
https://www.nwfsc.noaa.gov/research/divisions/cb/ecosystem/marineecology/aem.cfm

VELMA
https://www.epa.gov/water-research/visualizing-ecosystem-land-management-assessments-velma-model-20

EDT
VELMA Watershed Model
Transport & fate of water, nutrients, toxics

Processes Simulated
- **Hydrology**: stream water quality & quantity, soil moisture
- **Plants & soils**: plant growth, SOM formation & turnover, fate/transport of nutrients & toxics
- **Disturbances**: climate, additions of nutrients & toxics, harvest, fire, grazing...
- **Linkage to Fish & Marine Models**
VELMA Watershed Model
Transport & fate of water, nutrients, toxics

Processes Simulated
- **Hydrology**: stream water quality & quantity, soil moisture
- **Plants & soils**: plant growth, SOM formation & turnover, fate/transport of nutrients & toxics
- **Disturbances**: climate, additions of nutrients & toxics, harvest, fire, grazing...
- **Linkage to Fish & Marine Models**
VELMA Watershed Model
Transport & fate of water, nutrients, toxics

Processes Simulated
- **Hydrology**: stream water quality & quantity, soil moisture
- **Plants & soils**: plant growth, SOM formation & turnover, fate/transport of nutrients & toxics
- **Disturbances**: climate, additions of nutrients & toxics, harvest, fire, grazing...
- **Linkage to Fish & Marine Models**
VELMA Watershed Model
Transport & fate of water, nutrients, toxics

Processes Simulated
- **Hydrology**: stream water quality & quantity, soil moisture
- **Plants & soils**: plant growth, SOM formation & turnover, fate/transport of nutrients & toxics
- **Disturbances**: climate, additions of nutrients & toxics, harvest, fire, grazing...

Linkage to Fish & Marine Models
PUGET SOUND VITAL SIGNS

<table>
<thead>
<tr>
<th>Water Quantity</th>
<th>✓ Summer Stream Flows</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Quality</td>
<td>✓ Freshwater Quality</td>
</tr>
<tr>
<td></td>
<td>✓ Marine Water Quality</td>
</tr>
<tr>
<td></td>
<td>✓ Marine Sediment Quality</td>
</tr>
<tr>
<td>Healthy Human Population</td>
<td>✓ Onsite Sewage</td>
</tr>
<tr>
<td></td>
<td>✓ Shellfish Beds</td>
</tr>
<tr>
<td></td>
<td>✓ Outdoor Activities</td>
</tr>
<tr>
<td></td>
<td>✓ Local Foods</td>
</tr>
<tr>
<td>Quality of Life</td>
<td>✓ Sound Stewardship</td>
</tr>
<tr>
<td></td>
<td>✓ Economic Viability</td>
</tr>
<tr>
<td></td>
<td>✓ Good Governance</td>
</tr>
<tr>
<td></td>
<td>✓ Sense of Place</td>
</tr>
<tr>
<td></td>
<td>✓ Cultural Practices</td>
</tr>
</tbody>
</table>

Species and Foodweb	✓ Chinook Salmon*
	✓ Orcas
	✓ Pacific Herring
	✓ Birds*
Protect and Restore Habitat	✓ Estuaries (Salt Marshes)
	✓ Floodplains *
	✓ Land Cover and Development
	✓ Eelgrass
	✓ Shoreline Armoring

* With links to additional models or indicators
Salish Sea Model
Hydrodynamic Component
Salish Sea Model
Hydrodynamic Component
Salish Sea Model
Biogeochemical Component

Δ Temperature
Δ Dissolved O₂
Δ pH

Δ Salinity
Δ Dissolved O₂
Δ pH

Annual Average
Salish Sea

Annual Average
Snohomish Estuary

March

September

[Graph showing changes in temperature, dissolved oxygen, and pH in the Salish Sea and Snohomish Estuary]
PUGET SOUND VITAL SIGNS

Water Quantity
- Summer Stream Flows

Water Quality
- Marine Water Quality
- Freshwater Quality
- Marine Sediment Quality
 - Toxics in Fish

Healthy Human Population *
- Onsite Sewage
- Shellfish Beds
- Outdoor Activities
 - Local Foods
 - Air Quality
 - Drinking Water

Quality of Life *
- Sound Stewardship
- Economic Viability
- Good Governance
- Sense of Place
- Cultural Practices

Species and Foodweb
- Chinook Salmon
- Orcas
- Pacific Herring
- Birds

Protect and Restore Habitat
- Estuaries
 - Floodplains
 - Land Cover and Development
- Eelgrass
- Shoreline Armoring

* With links to additional models or indicators
Salish Sea Model ← VELMA
Land-Water Interactions
Atlantic Ocean Food Web Model

Human impacts submodel

Foodweb submodel

Hydrographic submodel

Climate, oceanography

Biogeochemistry

from SSM
Juvenile salmon from VELMA-EDT
Foodweb submodel
Adult salmon to VELMA-EDT

Hydrographic submodel

Climate, oceanography

Biogeochemistry from SSM
<table>
<thead>
<tr>
<th>Water Quantity</th>
<th>Species and Foodweb</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Summer Stream Flows</td>
<td>✓ Chinook Salmon</td>
</tr>
<tr>
<td>Water Quality</td>
<td>✓ Orcas</td>
</tr>
<tr>
<td>• Marine Water Quality</td>
<td>✓ Pacific Herring</td>
</tr>
<tr>
<td>• Freshwater Quality</td>
<td>✓ Birds</td>
</tr>
<tr>
<td>• Marine Sediment Quality</td>
<td></td>
</tr>
<tr>
<td>✓ Toxics in Fish</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Healthy Human Population</th>
<th>Protect and Restore Habitat</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Onsite Sewage</td>
<td>✓ Estuaries</td>
</tr>
<tr>
<td>✓ Shellfish Beds</td>
<td>• Floodplains</td>
</tr>
<tr>
<td>• Outdoor Activities</td>
<td>• Land Cover and Development</td>
</tr>
<tr>
<td>✓ Local Foods</td>
<td>✓ Eelgrass</td>
</tr>
<tr>
<td>• Air Quality</td>
<td>• Shoreline Armoring</td>
</tr>
<tr>
<td>• Drinking Water</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Quality of Life</th>
<th>Atlantis Ocean Foodweb Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓ Sound Stewardship</td>
<td></td>
</tr>
<tr>
<td>✓ Economic Viability</td>
<td></td>
</tr>
<tr>
<td>✓ Good Governance</td>
<td></td>
</tr>
<tr>
<td>✓ Sense of Place</td>
<td></td>
</tr>
<tr>
<td>✓ Cultural Practices</td>
<td></td>
</tr>
</tbody>
</table>
Puget Sound Vital Signs

Water Quantity
- Summer Stream Flows

Water Quality
- Marine Water Quality
- Freshwater Quality
- Marine Sediment Quality
- Toxics in Fish

Healthy Human Population *
- Onsite Sewage
- Shellfish Beds
- Outdoor Activities
- Local Foods
- Air Quality
- Drinking Water

Quality of Life *
- Sound Stewardship
- Economic Viability
- Good Governance
- Sense of Place
- Cultural Practices

Species and Foodweb
- Chinook Salmon
- Orcas
- Pacific Herring
- Birds

Protect and Restore Habitat
- Estuaries
- Floodplains
- Land Cover and Development
- Eelgrass
- Shoreline Armoring

* With links to additional models or indicators
Major goal: Effects of alternative development scenarios on stormwater runoff to Puget Sound

Year 2000 % Impervious

Year 2060 % Impervious
Managed Growth Scenario

Major goal: effects of alternative development scenarios on stormwater runoff to Puget Sound

Integrating environmental and human systems models

ENVISION Decision Support Framework

Left side: Environmental system models such as VELMA

Right side: Human system models (agent based)
Questions?

VELMA model: Bob McKane, Brad Barnhart, EPA
Salish Sea Model: Tarang Khangaonkar, PNNL
Atlantis model: Chris Harvey, Isaac Kaplan, Hem Nalini Morzaria Luna, NOAA-NWFSC; Michael Schmidt, Long Live the Kings
Urban stormwater data & models: Emily Howe, Phil Levin, The Nature Conservancy