April 2018

Elevated carbon dioxide alters neural signaling and anti-predator behaviors in ocean phase coho salmon (Oncorhynchus kisutch)

Chase Williams
Univ. of Washington, United States, crw22@uw.edu

Evan Gallagher
Univ. of Washington, United States, evang3@u.washington.edu

Andrew Dittman
NOAA Fisheries, United States, andy.dittman@noaa.gov

Paul McElhany
NOAA Ocean Acidification Program, United States, paul.mcelhany@noaa.gov

Shallin Busch
NOAA Ocean Acidification Program, United States, shallin.busch@noaa.gov

See next page for additional authors

Follow this and additional works at: https://cedar.wwu.edu/sssec

Part of the [Fresh Water Studies Commons](https://cedar.wwu.edu/fws), [Marine Biology Commons](https://cedar.wwu.edu/mbc), [Natural Resources and Conservation Commons](https://cedar.wwu.edu/nrc), and the [Terrestrial and Aquatic Ecology Commons](https://cedar.wwu.edu/tae)

Williams, Chase; Gallagher, Evan; Dittman, Andrew; McElhany, Paul; Busch, Shallin; Bammler, Theo; and MacDonald, James, "Elevated carbon dioxide alters neural signaling and anti-predator behaviors in ocean phase coho salmon (Oncorhynchus kisutch)" (2018). *Salish Sea Ecosystem Conference*. 382.
https://cedar.wwu.edu/sssec/2018sec/allsessions/382

This Event is brought to you for free and open access by the Conferences and Events at Western CEDAR. It has been accepted for inclusion in Salish Sea Ecosystem Conference by an authorized administrator of Western CEDAR. For more information, please contact westerncedar@wwu.edu.
Speaker
Chase Williams, Evan Gallagher, Andrew Dittman, Paul McElhany, Shallin Busch, Theo Bammler, and James MacDonald

This event is available at Western CEDAR: https://cedar.wwu.edu/ssec/2018ssec/allsessions/382
Elevated carbon dioxide alters neural signaling and anti-predator behaviors in ocean phase coho salmon (Oncorhynchus kisutch)

Chase Williams, UW/NOAA

University of Washington
Evan Gallagher: PI
Theo Bammler
James MacDonald

NOAA
Andrew Dittman: PI
Paul McElhany
Shallin Busch
Michael Maher
Ocean Acidification

From Marine Science today
Vertebrate olfactory system

Sakamoto et al., 2014
Coho salmon

- Anadromous
- Ecologically and economically important fish species
- Olfaction plays a central role in survival, navigation and reproduction.
Project aim

• Specific aim: Characterize the effects of predicted increases in CO$_2$ levels relevant to Washington waters on olfactory function in juvenile coho salmon.

 • Sub-aim 1: Determine if predicted increases in CO$_2$ levels impair olfactory-mediated responses in juvenile coho salmon.

 • Sub-aim 2: Determine if predicted increases in CO$_2$ levels alter olfactory neuronal signaling in juvenile coho salmon.
Experimental paradigm

Two-week exposure

Control: pH 7.8 (~800µatm)
Medium: pH 7.5 (~1600µatm)
High: pH 7.2 (~3200µatm)

Behavioral response to odorants

EOG/EEG analysis on odorant responses
Experimental odorants

1. Behavior: Salmon- Skin extract (alarm cue)

1. EOG/EEG: \(10^{-2}\)M L-serine
 \(10^{-2}\)M L-alanine
 Skin extract
Elevated CO₂ altered olfactory driven behavior in coho salmon

![Bar graph showing percent time spent in odorant arm before and after odor exposure for different pH conditions. The graph indicates a significant change in behavior for pH 7.2 after exposure.]
Top view of salmon olfactory system and electrophysiology test sites

- Forebrain
- Olfactory bulb
- Rosette
- EEG test region 1
- EEG test region 2
- EOG test region

Posterior

Anterior
Elevated CO$_2$ did not disrupt coho salmon neuron signaling in the rosettes.
Top view of salmon olfactory system and electrophysiology test sites

- Forebrain
- Olfactory bulb
- Rosette
- EEG test region 1
- EEG test region 2
- EOG test region
Elevated CO$_2$ altered neuronal signaling in the olfactory bulbs
Analysis of gene expression within the gills, rosettes and olfactory bulbs.
RNA-Seq analysis of CO$_2$ effects on olfactory rosettes and olfactory bulbs

Olfactory bulb

High vs. Ctl

- 801
- 115
- 181

Medium vs. Ctl

- 11
- 1
- 0

High vs. Medium

- 68
<table>
<thead>
<tr>
<th>ENTREZID</th>
<th>GENENAME</th>
<th>SYMBOL</th>
<th>log fold change</th>
<th>Hypothesized function</th>
</tr>
</thead>
<tbody>
<tr>
<td>10056877</td>
<td>complex 4</td>
<td>cpl4</td>
<td>0.608511265</td>
<td>both an inhibitor and a facilitator of synaptic vesicle fusion and neurotransmitter release</td>
</tr>
</tbody>
</table>
| 100538157 | potassium/sodium hyperpolarization-activated cyclic nucleotide-gated channel 2-like | hcn | 1.018675617 | glutamate receptor 1
| 100532096 | excitatory amino acid transporter 5-like | slc1a7 | 3.012169497 | GABA uptake | |
| 100502691 | guanine nucleotide-binding protein subunit alpha-14-like | gna14 | 3.038664213 | Modulators or transducers in various transmembrane signaling systems. |
| 100516098 | solute carrier organic anion transporter family member 1C1-like | slo1c1 | 3.136496308 | 4.076974342 | 3.136496308 |
| 100574423 | gamma-aminobutyric acid type B receptor subunit 2-like | gabrb2 | 1.012385533 | solute carrier family 26 member 6 |
| 100572093 | voltage-dependent L-type calcium channel subunit alpha-1D-like | cacna1d | 2.359161613 | aldehyde dehydrogenase family 9 member A1 |
| 100550991 | guanine nucleotide-binding protein subunit beta-5-like | gna1b | 4.020461837 | 2.359161613 | 0.859871022 |
| 100579667 | guanine nucleotide-binding protein subunit beta-5-like | gna1b | 2.02430363 | Integrate signals between receptors and effector proteins |
| 100572993 | voltage-dependent L-type calcium channel subunit alpha-1D-like | cacna1d | 2.82058363 | Calcium influx, neuron excitation |
| 100593085 | neuronal acetylcholine receptor subunit alpha-3 | chm3 | 2.23687983 | Neural excitation. Receptor family related to GABA and RECEPTORS |
| 100586704 | solute carrier family 6 member 4 | slc6a4 | 2.09210723 | Serotonin regulates synaptic activity in olfactory bulb glomeruli |
| 100511889 | synaptic-somatostatin-associated protein 25-B-like | snyp25 | 1.88215846 | Synaptic transmitter uptake and release. GABA and glutamate associated |
| 100572997 | voltage-dependent L-type calcium channel subunit alpha-1D-like | cacna1d | 1.87957824 | Mediates the entry of calcium ions into excitable cells and are also involved in a variety of calcium-dependent processes. |
| 100530689 | gamma-aminobutyric acid type B receptor subunit 2-like | gabrb2 | 1.77200697 | 1.77200697 |
| 100577287 | neuronal pentraxin-1-like | np1 | 1.72509305 | Involved in excitatory synapse remodeling. |
| 100578223 | vesicular glutamate transporter 1-like | vglut1 | 1.622496056 | Excitatory glutamate transporter |
| 100572996 | voltage-dependent L-type calcium channel subunit alpha-15-like | cacna1a5 | 1.52449251 | Solute carrier family 22 member 5 |
| 100566793 | sodium/calcium exchanger 1-like | sloca3 | 1.458399247 | A protein involved in transporting chloride, oxalate, sulfate and bicarbonate |
| 100586027 | solute carrier family 12 member 7-like | slc12a7 | 1.368215846 | Export of Cl⁻ and Na⁺ into sweat and salivary glands |
| 100538425 | sodium channel subunit beta-1-like | scn1b | 1.15576177 | Sodium channel subunit beta-1-like |
| 100564801 | potassium voltage-gated channel subfamily H member 1-like | kcnh1 | 1.14457554 | Involved in neural excitation and neurotransmitter release |
| 100562494 | guanine nucleotide-binding protein subunit beta-5-like | gna1b | 1.14048578 | Involved in the termination of the signaling initiated by the G protein coupled receptors |
| 100570984 | solute carrier family 22 member 16-like | slc22a16 | 1.07256445 | L-carnitine transporter a precursor to acetylcholine |
| 100532651 | sodium-dependent serotonin transporter-like | slc6a9 | 1.049560641 | Terminates the action of serotonin and recyclizes it in a sodium-dependent manner |
| 100561149 | solute carrier organic anion transporter family member 3A1-like | slc2a11 | 1.01870517 | Organic anion transporter |
| 100507347 | glutaamate receptor ionotropic, kainate 4-like | grik4 | 1.012385533 | Excitatory receptor |
| 100583542 | sodium- and chloride-dependent GABA transporter 2-like | sloa13 | 0.97176727 | GABA uptake |
| 100578390 | solute carrier organic anion transporter family member 3A1-like | slc2a11 | 0.89870102 | Organic anion transporter |
| 100601022 | solute carrier family 4 member 1 adaptor protein | slc4a1ap | 0.724949516 | Bicarbonate transporter |
| 100515337 | solute carrier family 27 member 4 | slc27a4 | 0.74987283 | Role in fatty acid uptake |
| 100578896 | glutaamate receptor ionotropic, delta-1-like | gnr4 | 0.842228494 | Mediate most of the fast excitatory synaptic transmission in the central nervous system and play key roles in synaptic plasticity. |
| 100504348 | glutaamate receptor 1-like | grm1 | 0.84936331 | Glutamate receptor that functions by activating phosphatase C |
| 100584763 | potassium voltage-gated channel subfamily C member 1-like | kcnj1 | 0.821498818 | Plays a role in the rapid repolarization of fast-firing brain neurons, forms complex with KCNJ2 |
| 100571004 | neurotrophin-3-like | np3 | 0.685192487 | Members of this family may be involved in the formation and remodeling of central nervous system synapses |
| 100585781 | solute carrier family 2 member 6 | slc2e6 | 1.02017821 | Glucose transporter |
| 100500384 | solute carrier family 22 member 6 | slc22a6 | 1.12531705 | Glucose transporter - a precursor to acetylcholine |
| 100511300 | short transient receptor potential channel 2-like | trpc2 | 1.29926479 | Receptor-activated non-selective calcium permanent cation channel |
| 100500164 | aldehyde dehydrogenase family 9 member A1-like | aldh9a1 | 0.87569161 | Protein involved in the dehydrogenation of gamma-aminobutyraldehyde to GABA |
| 100571979 | tubby-related protein 3-like | tubb3 | 0.46828381 | Related to control of neural differentiation /maintenance|
| 100566629 | tubby-related protein 3-like | tubb3 | 0.746974344 | Related to control of neural differentiation |
| 100585010 | acyl-CoA thiolase | cmt | 0.53831654 | Production of melatonin. Sleep cycle related. Next step enzyme after AANAT |
| 100507867 | serotin-9-acetyltransferase-like | aat | 0.40645837 | Production of melatonin. Sleep cycle related |
| 100573284 | sodium-coupled neutral amino acid transporter 3-like | slc3a3 | 2.10514423 | Role in glutamate/GABA transport, associated with circadian rhythm as well maybe |

Changes in gene expression in control vs. high CO2 olfactory bulbs.
Changes in gene expression in control vs. high CO₂ olfactory bulbs

- GABA-B beta subunit 2- mediates coupling to G-proteins
- Exportation of Cl- needed for GABA signaling
- GABA uptake
- Synaptic transmitter uptake and release. GABA and glutamate associated
- GABA-b linked
- Bicarbonate transport
- Neural excitation and neurotransmitter release
- Glutamate/GABA transport, associated with circadian rhythm

*All are putative functions

- Calcium influx, neuron excitation
- Mediate fast excitatory synaptic transmission in the central nervous system and plays key roles in synaptic plasticity
- Organic anion transporter
- Both an inhibitor and a facilitator of synaptic vesicle fusion and neurotransmitter release
- Involved in the dehydrogenation of gamma-aminobutyraldehyde to GABA
Summation of the results

• Juvenile coho salmon exposed to a high CO₂ level experienced a disruption of olfactory driven behaviors.

• Exposure to the high CO₂ level did not alter odorant induced signaling in the olfactory rosettes but did induce significant changes in signaling within the olfactory bulbs.

• RNA-seq analysis revealed significant changes in expression of many genes involved in neuronal signaling and signal modulation within the olfactory bulbs from coho exposed to the high CO₂ level compared to control coho.
Acknowledgments

• **Gallagher lab:**
 Richard Ramsden

• **NOAA collaborators:**
 Meg Chadsey
 David Baldwin
 Frank Sommers
 Darran May
 Danielle Perez

• **Funding:**
 Washington Sea Grant
 Washington Ocean Acidification Center

• **All the fish used in the study!**
Exposure system
Elevated CO\textsubscript{2} altered neuronal signaling in the olfactory bulbs

Peak odorant induced signal

- **Region 2**
 - Skin extract
 - L-alanine

Signal duration

- **Region 2**
 - Skin extract
 - L-alanine

CO\textsubscript{2} Exposure Level

- Control
- High

A

Peak amplitude

- pH 7.8
- pH 7.2

- Skin extract
- L-alanine

B

Seconds

- pH 7.8
- pH 7.2

- Skin extract
- L-alanine
Exposure chemistry

The image shows a scatter plot with two axes: Alkalinity (10^6) on the y-axis and Salinity on the x-axis. The plot includes data points for different dates:
- Red dots represent 8/18/2016
- Green dots represent 9/23/2016
- Blue dots represent 9/8/2016

The spread of the data points suggests variations in alkalinity and salinity over time.
Results
Exposure chemistry