Elevated carbon dioxide alters neural signaling and anti-predator behaviors in ocean phase coho salmon (Oncorhynchus kisutch)

Chase Williams
Univ. of Washington, United States, crw22@uw.edu

Evan Gallagher
Univ. of Washington, United States, evang3@u.washington.edu

Andrew Dittman
NOAA Fisheries, United States, andy.dittman@noaa.gov

Paul McElhany
NOAA Ocean Acidification Program, United States, paul.mcelhany@noaa.gov

Shallin Busch
NOAA Ocean Acidification Program, United States, shallin.busch@noaa.gov

See next page for additional authors

Follow this and additional works at: https://cedar.wwu.edu/ssec

Part of the [Fresh Water Studies Commons](https://cedar.wwu.edu/ssec/2018ssec/allsessions/382), [Marine Biology Commons](https://cedar.wwu.edu/ssec/2018ssec/allsessions/382), [Natural Resources and Conservation Commons](https://cedar.wwu.edu/ssec/2018ssec/allsessions/382), and the [Terrestrial and Aquatic Ecology Commons](https://cedar.wwu.edu/ssec/2018ssec/allsessions/382)

Williams, Chase; Gallagher, Evan; Dittman, Andrew; McElhany, Paul; Busch, Shallin; Bammler, Theo; and MacDonald, James, "Elevated carbon dioxide alters neural signaling and anti-predator behaviors in ocean phase coho salmon (Oncorhynchus kisutch)" (2018). *Salish Sea Ecosystem Conference*. 382.
https://cedar.wwu.edu/ssec/2018ssec/allsessions/382

This Event is brought to you for free and open access by the Conferences and Events at Western CEDAR. It has been accepted for inclusion in Salish Sea Ecosystem Conference by an authorized administrator of Western CEDAR. For more information, please contact westerncedar@wwu.edu.
Speaker
Chase Williams, Evan Gallagher, Andrew Dittman, Paul McElhany, Shallin Busch, Theo Bammler, and James MacDonald

This event is available at Western CEDAR: https://cedar.wwu.edu/ssec/2018ssec/allsessions/382
Elevated carbon dioxide alters neural signaling and anti-predator behaviors in ocean phase coho salmon (Oncorhynchus kisutch)

Chase Williams, UW/NOAA

University of Washington
Evan Gallagher: PI
Theo Bammler
James MacDonald

NOAA
Andrew Dittman: PI
Paul McElhany
Shallin Busch
Michael Maher
Ocean Acidification

From Marine Science today
Vertebrate olfactory system

Sakamoto et al., 2014
Coho salmon

- Anadromous
- Ecologically and economically important fish species
- Olfaction plays a central role in survival, navigation and reproduction.
Project aim

• Specific aim: Characterize the effects of predicted increases in CO$_2$ levels relevant to Washington waters on olfactory function in juvenile coho salmon.

 • Sub-aim 1: Determine if predicted increases in CO$_2$ levels impair olfactory-mediated responses in juvenile coho salmon.

 • Sub-aim 2: Determine if predicted increases in CO$_2$ levels alter olfactory neuronal signaling in juvenile coho salmon.
Experimental paradigm

Two-week exposure

Control: pH 7.8 (~800µatm)
Medium: pH 7.5 (~1600µatm)
High: pH 7.2 (~3200µatm)

Behavioral response to odorants

EOG/EEG analysis on odorant responses
Experimental odorants

1. Behavior: Salmon- Skin extract (alarm cue)

1. EOG/EEG: 10^{-2}M L-serine
 10^{-2}M L-alanine
 Skin extract
Elevated CO₂ altered an olfactory driven behavior in coho salmon

Percent time spent in odorant arm

- Pre odor
- Post odor

- pH 7.8
- pH 7.5
- pH 7.2

* Significant difference
Top view of salmon olfactory system and electrophysiology test sites

- Forebrain
- Olfactory bulb
- Rosette
- Posterior
- Anterior
- EEG test region 1
- EEG test region 2
- EOG test region
Elevated CO₂ did not disrupt coho salmon neuron signaling in the rosettes

![Graph showing EOG responses to different CO₂ exposures and pH levels for L-serine, L-alanine, and skin extract](image-url)
Top view of salmon olfactory system and electrophysiology test sites

- Forebrain
- Olfactory bulb
- Rosette
- EEG test region 1
- EEG test region 2
- EOG test region
Elevated CO$_2$ altered neuronal signaling in the olfactory bulbs
Analysis of gene expression within the gills, rosettes and olfactory bulbs
RNA-Seq analysis of CO₂ effects on olfactory rosettes and olfactory bulbs

Olfactory bulb

High vs. Ctl

Medium vs. Ctl

High vs. Medium

801
11
68
115
1
0
181
<table>
<thead>
<tr>
<th>ENTREZID</th>
<th>GENENAME</th>
<th>SYMBOL</th>
<th>log fold change</th>
<th>Hypothetical function</th>
</tr>
</thead>
<tbody>
<tr>
<td>100365787</td>
<td>complex 4</td>
<td>Cplk4</td>
<td>-0.44906311</td>
<td>Plays a role in the rapid neuropilation of fast-firing brain neurons, forms complex with KCNE2</td>
</tr>
<tr>
<td>100378986</td>
<td>glutaemate receptor ionotropic, delta-1-like</td>
<td>Gld1</td>
<td>-0.40389964</td>
<td>Mediate most of the fast excitatory synaptic transmission in the central nervous system and play key roles in synaptic plasticity</td>
</tr>
<tr>
<td>100304348</td>
<td>glutamate receptor 1-like</td>
<td>Gm1</td>
<td>-0.44906311</td>
<td>Glutamate receptor that functions by activating phospholipase C</td>
</tr>
<tr>
<td>100348763</td>
<td>potassium-voltage-gated channel subfamily C member 1-like</td>
<td>Kcnc1</td>
<td>-0.00124881</td>
<td>Plays a role in the formation and remodeling of central nervous system synapses</td>
</tr>
<tr>
<td>100307804</td>
<td>neuropeptide-Y</td>
<td>Npy3</td>
<td>-0.00811265</td>
<td>Members of this family may be involved in the formation and remodeling of central nervous system synapses</td>
</tr>
<tr>
<td>100358781</td>
<td>solute carrier family 2 member 6</td>
<td>Slc2a6</td>
<td>-1.21003782</td>
<td>Glucose transporter</td>
</tr>
<tr>
<td>100300834</td>
<td>solute carrier family 22 member 6</td>
<td>Slc22a6</td>
<td>-1.02553755</td>
<td>Co-transporter of glucose and galactose</td>
</tr>
<tr>
<td>100330400</td>
<td>short transient receptor potential channel 2-like</td>
<td>Tpr2</td>
<td>-1.42990479</td>
<td>Receptor-activated non-selective cation permeant cation channel</td>
</tr>
<tr>
<td>100001664</td>
<td>aldehyde dehydrogenase family 9 member A1-like</td>
<td>Aldh6a1</td>
<td>-3.87785611</td>
<td>Protein involved in the dehydrogenation of aldehydes and ketones from GABAergic interneurons to GABAergic interneurons</td>
</tr>
<tr>
<td>100077959</td>
<td>tubby</td>
<td>Tubb</td>
<td>0.00922583</td>
<td>Related to control of neural differentiation</td>
</tr>
<tr>
<td>100665209</td>
<td>tubby-related protein 1-like</td>
<td>Tubr1</td>
<td>4.07697434</td>
<td>Related to control of neural differentiation</td>
</tr>
<tr>
<td>100350310</td>
<td>acyl-CoA-thioesterase</td>
<td>Acsm3</td>
<td>4.03831564</td>
<td>Production of melatonin. Sleep cycle related. Next sleep stage after.AANAT</td>
</tr>
<tr>
<td>100307687</td>
<td>serotonin-9-acetyltransferase-like</td>
<td>Satel</td>
<td>4.02443873</td>
<td>Production of melatonin. Sleep cycle related. Next sleep stage after. AANAT</td>
</tr>
<tr>
<td>100372944</td>
<td>sodium-coupled neutral amino acid transporter 3-like</td>
<td>Slc3a13</td>
<td>2.16514429</td>
<td>Role in glutamate/GABA transport, associated with circadian rhythm as well as sleep cycles.</td>
</tr>
</tbody>
</table>
Changes in gene expression in control vs. high CO₂ olfactory bulbs

• GABA-B beta subunit 2- mediates coupling to G-proteins
• Exportation of Cl- needed for GABA signaling
• GABA uptake
• Synaptic transmitter uptake and release. GABA and glutamate associated
• GABA-b linked
• Bicarbonate transport
• Neural excitation and neurotransmitter release
• Glutamate/GABA transport, associated with circadian rhythm

*All are putative functions

• Calcium influx, neuron excitation
• Mediate fast excitatory synaptic transmission in the central nervous system and plays key roles in synaptic plasticity
• Organic anion transporter
• Both an inhibitor and a facilitator of synaptic vesicle fusion and neurotransmitter release
• Involved in the dehydrogenation of gamma-aminobutyraldehyde to GABA
Summation of the results

• Juvenile coho salmon exposed to a high CO₂ level experienced a disruption of olfactory driven behaviors.

• Exposure to the high CO₂ level did not alter odorant induced signaling in the olfactory rosettes but did induce significant changes in signaling within the olfactory bulbs.

• RNA-seq analysis revealed significant changes in expression of many genes involved in neuronal signaling and signal modulation within the olfactory bulbs from coho exposed to the high CO₂ level compared to control coho.
Acknowledgments

• Gallagher lab:
 Richard Ramsden

• NOAA collaborators:
 Meg Chadsey
 David Baldwin
 Frank Sommers
 Darran May
 Danielle Perez

• Funding:
 Washington Sea Grant
 Washington Ocean Acidification Center

• All the fish used in the study!
Nilsson et al., 2012
Elevated CO$_2$ altered neuronal signaling in the olfactory bulbs
Exposure chemistry

![Exposure chemistry graph]

- Alkalinity (10^-6)
- Salinity
- Date:
 - 8/18/2016
 - 9/23/2016
 - 9/8/2016
Results

Exposure chemistry