Recent conditions highlight regional differences in temperature, salinity and dissolved oxygen between Strait of Juan de Fuca and Puget Sound sites under anomalous 2014-2017 climate patterns

Julia Bos
Washington (State). Department of Ecology, jbos461@ecy.wa.gov

Christopher Krembs
Washington (State). Department of Ecology, ckre461@ecy.wa.gov

S. L. Albertson
Washington (State). Department of Ecology, salb461@ecy.wa.gov

Mya Keyzers
Washington (State). Department of Ecology, mkey461@ecy.wa.gov

Allison Brownlee
Washington (State). Department of Ecology, albr461@ecy.wa.gov

See next page for additional authors

Follow this and additional works at: https://cedar.wwu.edu/ssec

Part of the Fresh Water Studies Commons, Marine Biology Commons, Natural Resources and Conservation Commons, and the Terrestrial and Aquatic Ecology Commons

Bos, Julia; Krembs, Christopher; Albertson, S. L.; Keyzers, Mya; Brownlee, Allison; and Maloy, Carol, "Recent conditions highlight regional differences in temperature, salinity and dissolved oxygen between Strait of Juan de Fuca and Puget Sound sites under anomalous 2014-2017 climate patterns" (2018). *Salish Sea Ecosystem Conference*. 388.

This Event is brought to you for free and open access by the Conferences and Events at Western CEDAR. It has been accepted for inclusion in Salish Sea Ecosystem Conference by an authorized administrator of Western CEDAR. For more information, please contact westerncedar@wwu.edu.
Regional variances in temperature, salinity and dissolved oxygen between Strait of Juan de Fuca and Puget Sound.
Status and trends in water quality indicators
(collected monthly at 39 stations and compared to baselines)

Water Quality variables

Physical variables
- Temperature
- Salinity
- Density

Chemical variables
- Oxygen
- Nitrate
- Silicate
- Phosphate
- Ammonium
- Nutrient ratios
- pH

Bio-optical variables
- Water clarity
- Chlorophyll a
- Euphotic depth
Using water mass characteristics to understand water quality in the Strait of Juan de Fuca and Puget Sound.

Low DO? ...something’s come between us....

• What waters are entering Puget Sound?
• What are the key characteristics of source waters?
• When and how do these waters affect DO (and other WQ indicators?)
• Tele-effects? When do outlying regions affect nearby conditions?
DO Profiles at SJF002; 2017

Apr – Jul 2017

Aug – Nov 2017

* Note scale change
The ocean to river link in Salish Sea basins.

Estuarine circulation connects Puget Sound/Salish Sea to the ocean.
Bathymetry & freshwater outflow can act as barriers to seawater inflow.

Thomson, R.E. et al. 2007. Estuarine vs. transient flow regimes in Juan de Fuca Strait.
Redfield’s Water Masses – 1950
Based on July 1931 & July 1932 data

Water Types:
A: Deeper Pacific water (excluded by bottom contour)
B: Pacific water (50 – 250 m depths)
C: Superficial Pacific water (excluded by net outflow of Strait)
D: Surface Juan de Fuca, San Juan Channel, deep Georgia Strait
E: Georgia Strait surface water + Type B

Comparing JEMS sites to Redfield’s Water Masses

Water Types:
A: Deeper Pacific water
B: Pacific water (50 – 250 m depths)
C: Superficial Pacific water (all depths)
D: Superficial Juan de Fuca, San Juan, deep Georgia Strait
E: Georgia Strait surface water + Type B

T-S Diagram
Comparing JEMS sites to Redfield’s Water Masses

Water Types:
A: Deeper Pacific water
B: Pacific water (50 – 250 m depths)
C: Superficial Pacific water (all depths)
D: Superficial Juan de Fuca, San Juan, deep Georgia Strait
E: Georgia Strait surface water + Type B

+ ???

JEMS 1999 – 2017; All Data
Analyses of Water Masses for the Straits

Source water type

SW1: River (Fraser)

SW2: Deep South (Deep Shelf/Upwelled Pacific Ocean water)

SW3: Pre-Season (Mixed Estuary "stagnant" water)

SW4: Surface South (Surface Pacific Ocean/Columbia River water)

Fig. 4 Mean contributions for the source water type.
Comparison of T-S end member properties described by Redfield, Masson with JEMS data.

Masson:
- SW1 (river)
- SW3 (“pre-season”/mixed estuary water)
- SW2 (Pacific ocean water)
Mapping DO using water mass characteristics at sites.

Hood Canal Possession Snd.

*all years & months.

Strait of Juan de Fuca

T-S Diagram

DO <3 mg/L

Hood Canal Possession Snd.

*all years & months.

Strait of Juan de Fuca

*all years & months.

T-S Diagram

DO <3 mg/L

all years & months.
Mapping DO using water mass characteristics at sites.

T-S Diagram

DO <3 mg/L
Admiralty Reach Salinity

Salinity (PSU)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

2009 2010 2011 2012 2013
Admiralty Reach DO

DO (mg/L)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Mapping DO using water mass characteristics at sites.
Mapping DO using water mass characteristics at sites.

T-S Diagram

DO 4-5 mg/L

Sites: SJF000, SJF001, SJF002
Mapping DO using water mass characteristics at sites.

T-S Diagram

DO 5-6 mg/L
Mapping DO using water mass characteristics at sites.
Mapping DO using water mass characteristics at sites.
Salish Sea model quantifies exchange and shows reflux occurring at sills.

Density Frequency

Strait of Juan de Fuca

Admiralty Inlet (mid – sill)
Summary:

- Admiralty sill is a barrier to exchange of very salty (>33 PSU), low DO (<3 mg/L) water into Puget Sound.
- Water masses are transformed & oxygenated between the ocean & Puget Sound.
- Sites with the lowest DO are distant & separated from low DO ocean water and thus issues are locally driven.
- Reflux (pre-season) water is impacting water quality!