Apr 5th, 4:00 PM - 4:15 PM

Effects of environmentally realistic concentrations of neonicotinoid insecticides on an aquatic invertebrate community

Claire Duchet
Washington State Univ., United States, claire.duchet@wsu.edu

Alyssa Kraft
Washington State Univ., United States, akraft3@uw.edu

John D. Stark
Washington State Univ., United States, starkj@wsu.edu

Follow this and additional works at: https://cedar.wwu.edu/sssec

Part of the [Fresh Water Studies Commons](https://cedar.wwu.edu/sssec/fresh-water-studies), [Marine Biology Commons](https://cedar.wwu.edu/sssec/marine-biology), [Natural Resources and Conservation Commons](https://cedar.wwu.edu/sssec/natural-resources-and-conservation), and the [Terrestrial and Aquatic Ecology Commons](https://cedar.wwu.edu/sssec/terrestrial-aquatic-ecology)

This Event is brought to you for free and open access by the Conferences and Events at Western CEDAR. It has been accepted for inclusion in Salish Sea Ecosystem Conference by an authorized administrator of Western CEDAR. For more information, please contact westerncedar@wwu.edu.
Effects of environmentally realistic concentrations of neonicotinoid insecticides on an aquatic invertebrate community

Claire Duchet, Alyssa Kraft, Cailin MacKenzie, John D. Stark
Introduction

- Neonicotinoid insecticides represent 24% of the global market, and their use is increasing globally.

- Clothianidin, imidacloprid, thiamethoxam are the most commonly-used neonicotinoids on corn and soybeans.

- Imidacloprid is also used privately: lawn and garden care, and topical flea medicines.
Introduction

- Used against insect pests but toxic to non-target organisms (e.g. crustaceans, bees, flies, birds)

Acetylcholinesterase (AChE) breaks down acetylcholine (Ach), preventing overstimulation and blockage of acetylcholine receptors.

Mode of action of neonicotinoids.

Introduction

- Not intended for direct use in water bodies, but they may enter in the aquatic compartment via spray drift, runoff or leaching.

- Soluble in water, persistent in soil, and may be found in surface waters and drinking water (Klarish et al., 2017).
Introduction

- In Canada, wetlands close to agricultural fields (Anderson et al., 2015):
 - 3.11 µg/L clothianidin,
 - 0.256 µg/L imidacloprid,
 - 1.49 µg/L thiamethoxam.

- In Western Washington, imidacloprid almost always detected in surface water (WSDA source):
 - usually <0.1 µg/L, but >1 µg/L in some cases,
 - 1.74 µg/L in the Big Ditch slough, a creek providing habitat for salmons in the Skagit wildlife area.
Objective

- Very few data about the effects of mixture of neonicotinoids available.

- Neonicotinoid contamination induce a top-down trophic cascade in a community dominated by invertebrate predators (Miles et al., 2017).

- **Our objective:** to test the effect of a mixture of imidacloprid, clothianidin and thiamethoxam on an aquatic invertebrate community.

- **Hypothesis:** By affecting predators, indirect positive effect on herbivores.
Preliminary experiment

Test in control conditions on *Ceriodaphnia dubia* (semi-static test): imidacloprid (0.256 µg/L), clothianidin (3.11 µg/L), thiamethoxam (1.49 µg/L), and the mixture.

Survival following 8-d exposure

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Number of surviving adults</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>10</td>
</tr>
<tr>
<td>Imidacloprid</td>
<td>9</td>
</tr>
<tr>
<td>Clothianidin</td>
<td>8</td>
</tr>
<tr>
<td>Thiamethoxam</td>
<td>7</td>
</tr>
<tr>
<td>Mixture</td>
<td>6</td>
</tr>
</tbody>
</table>

Reproduction following 8-d exposure

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Number of neonates / female</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>20</td>
</tr>
<tr>
<td>Imidacloprid</td>
<td>18</td>
</tr>
<tr>
<td>Clothianidin</td>
<td>16</td>
</tr>
<tr>
<td>Thiamethoxam</td>
<td>14</td>
</tr>
<tr>
<td>Mixture</td>
<td>12</td>
</tr>
</tbody>
</table>

*: Significant differences between the treatment and control (Tukey’s HSD test, p < 0.05).
Materials and methods
Materials and methods

- 60 L well water
- 50 mL pond water
- 66 cm tub
- 76 L tub
- 20 g dry oak leaves
- 2 g rabbit food
- 38 cm height
- 66 cm width
Materials and methods

Setting up
Well water + pond water + leaf litter

Macroinvertebrates
(predators)

Treatment
- imidaclorpid (0.256 µg/L)
- clothianidin (3.11 µg/L)
- thiamethoxam (1.49 µg/L)
- mixture

Sampling dates (from 9/13/17 to 10/11/2017)
- 0-d
- 2-d
- 7-d
- 14-d
- 28-d
- (...)
Materials and methods

On each sampling date:

- Environmental parameters (pH, conductivity, dissolved oxygen, temperature)
- Invertebrate sampling
- Water samples for chemical analysis
- Water samples for chlorophyll \(a \) concentrations
- Dipteren colonization (mosquito oviposition habitat selection): every 2 days
Results

Concentrations of the neonicotinoids over time
Results

Community:

Active dispersers (10 taxa):
- mosquitoes (Culex pipiens, Culiseta longiareolata),
- non-biting midges (Chironomids),
- biting-midges (Ceratopogonidae),
- ephidridae larvae,
- mayflies (Ephemeroptera),
- odonates,
- water beetle (Hydrophilidae),
- water boatmen (Anisops sardea),
- hydracarians.
Results

Community:

Passive dispersers (11 taxa):

- Copepods (cyclopoids).

Cladocerans:

- *Scapholeberis, Chydorus, Pleuroxus, Ceriodaphnia, Daphnia, Simocephalus, Alona, Macrothricidae, Diaphanosoma*.

Ostracods.
Results

- **Species evenness**

![Graph showing species evenness over sampling dates]

RM ANOVA: $F_{4, 20} = 0.38, p = 0.82$
Results

- **Effect on taxa richness**

<table>
<thead>
<tr>
<th>Sampling dates</th>
<th>Control</th>
<th>Imidacloprid</th>
<th>Clothianidin</th>
<th>Thiamethoxam</th>
<th>Mixture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*: Significant differences between the treatment and control (Fisher’s LSD test following RM ANOVA, p < 0.05).
Results

Herbivore biomass

*: Significant differences between the treatment and control (Fisher’s LSD test following RM ANOVA, p < 0.05).
Conclusions - Perspectives

- Effects on the community:
 - Decrease of the active dispersers 3 weeks after exposure to the mixture
 - Increase of the passive dispersers 1 week after exposure to imidacloprid and 3 weeks after exposure to thiamethoxam
 - Increase of the zooplankton biomass 3 weeks after exposure due to lack of predators?

- Still have to analyze the chlorophyll a data

- Next study: run the experiment in early stage population development (late spring / early summer)
Acknowledgments and Funding

- Funding: Stormwater strategic initiative program

Thank you!
Questions?

References

Anderson, J., Dubetz, C. and Palace, V. 2015 Neonicotinoids in the Canadian aquatic environment: a literature review on current use products with a focus on fate, exposure, and biological effects. Science of the Total Environment, 505: 409-422.

