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Outline of talk

1. Why do we need to understand more about carbonate chemistry in estuarine

- habitats?
W 2. How does OA manifest in these habitats on daily and seasonal time scales? b g

= 3. What does this mean for exceedance of physiological and water quality thresholds?
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Project background and motivation
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- 1. Short-term fluctuations in carbonate chemistry, or
- “carbonate weather”, impact organismal fitness

ApH/ATCO

Carbonate weather is predicted to become more extreme
with ocean acidification
-OA increases baseline [TCO,]

-Local metabolism drives [TCO,] variability
-OA + metabolism = tbaseline TCO,+ 1 pH & pCO, variability

Sensitivity of parameter >

Intrinsic thermodynamic properties of the carbonate
system, therefore widely applicable in metabolically
intensive systems

0.002 |

1900 2000 2100 2200 2300
[TCO,]

Ocean acidification
Adapted from Takeshita et al., 2015 Biogeosciences
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Outline of talk

1. Why do we need to understand more about carbonate chemistry in estuarine
habitats?

Improved understanding of natural vs. OA-forced signals of variability
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Frequency, duration, and magnitude of organismal exposure to stressful conditions
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2. How does OA manifest in these habitats on daily and seasonal time scales?
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—— 3. What does this mean for exceedance of physiological and water quality thresholds? &=

Daily and seasonal variability Organism and management thresholds

Background Observations + OA Simulations



Field sampling

July 2015 — April 2016 EPA Region 10 Dive Team

« 2 study sites in subtidal seagrass beds (0.5m - 4.5m)
» YSI, SeaFET, and SAMI pH deployments
» Grab samples for TCO, & pCO,

Mission Beach

Hat Island

Puget Sound?" e,

Possession Sound
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Seattle WA

Background Observations + OA Simulations
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Field observations
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Field observations
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OA simulations from 1765-2100

Hat Island
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Atmospheric CO, from the RCP 8.5 scenario

Median +/- 90% interquantile range

Summer: July 15 — November 1
Winter: November 1 — March 1
Spring: March 1 - April 16

1800 1850 1900 1950 2000 2050 2100

aragonite

—.
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» modeled using adaption of the AC* method (detailed in Pacella et al., 2018)

Estimated C,,., agrees well with published values for contemporary surface waters in the California Current

How does OA affect daily and seasonal carbonate chemistry dynamics?
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OA alters carbonate weather and seasonal climatology of carbonate chemistry
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* OA reduces the ability of the system to buffer natural extremes, causing preferential amplification of low pH

(and high pCO,) during times of additive C_, and metabolic CO,

* Most harmful carbonate parameters for coastal organisms are changing up to 2x more rapidly than medians
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OA alters carbonate weather and seasonal climatology of carbonate chemistry
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Outline of talk

1. Why do we need to understand more about carbonate chemistry in estuarine

habitats?

« Improved understanding of natural vs. OA-forced signals of variability
» Frequency, duration, and magnitude of organismal exposure to stressful conditions

C,ni, reduces ability of system to buffer natural carbon cycling
« High pCO, and low pH conditions changing most rapidly

« Carbonate weather and seasonal climatology more extreme for pH and pCO,, dampened for Q,,,

—_ 3. What does this mean for exceedance of physiological and water quality
thresholds?
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Interaction between “natural” and OA-driven changes to buffering capacity
controls the timing of crossing of physiological and water quality thresholds
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Early M. californianus development

(Waldbusser et al., 2015 PLoS ONE)

Background

Observations + OA Simulations

Daily and seasonal variability

Organism and management thresholds




% exceedance pHT <7.5
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Interaction between “natural” and OA-driven changes to buffering capacity
controls the timing of crossing of physiological and water quality thresholds

pH<7.5

C. magister larvae survival
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Regular exceedance of pH and pCO, thresholds by mid-century...

...currently in acceleration of ), ., exceedance?
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% exceedance pHT <7.5
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Interaction between “natural” and OA-driven changes to buffering capacity
controls the timing of crossing of physiological and water quality thresholds

pH<7.5
w . . Phenology of Dungeness crab
C. magister larvae survival
Table 3.1 Peak reproductive timing throughout the range of C. magister
Moulting/ Egg Larval duration
Full Year Location mating deposition > Hatching (range of time) Settlement
Summer
wWinter Oregon— March—  October— | January— 130 (89-143)  April-
Spring Washington June December | March August
Puget April- October— | February— | 150 June—
Sound September December | May August
Bnush No data  September—| December—{ No data July—Later
1800 1500 2000 2100 Columbia February |June

Rasmuson 2013, Adv. Mar. Bio.

Overlap of poor environmental conditions driven by OA and phenology of OA-sensitive life stages creates potential for

organismal impacts

>10% annual exceedance by 2050, 14 years and 100ppm atmospheric CO, earlier due to reduced buffering
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Interaction between “natural” and OA-driven changes to buffering capacity
controls the timing of crossing of physiological and water quality thresholds

EPA’s recommended criterion states that the pH of marine waters
“should not be changed more than 0.2 units outside the naturally
occurring variation”

Changes to seasonal climatology
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Changes to carbonate weather
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Outline of talk

1. Why do we need to understand more about carbonate chemistry in estuarine

habitats?

« Improved understanding of natural vs. OA-forced signals of variability
« Frequency, duration, and magnitude of organismal exposure to stressful conditions

—

2. How does OA manifest in these habitats on daily and seasonal time scales?

C,ni, reduces ability of system to buffer natural carbon cycling
« High pCO, and low pH conditions changing most rapidly

« Carbonate weather and seasonal climatology more extreme for pH and pCO,, dampened for Q,,,

3. What does this mean for exceedance of physiological and water quality
thresholds?

« Earlier exposure to more severe stressful conditions for organisms
« OAdrives variable time to exceedance of existing recommendations for water quality criteria

Background Observations + OA Simulations Daily and seasonal variability Organism and management thresholds




Key Take-aways

1. Estuaries are naturally dynamic chemical environments, which primes these
systems for more rapid and severe changes to the CO, system with OA

 Analogous to naturally high-CO, upwelling zones

2. The interaction of natural CO, cycl_ir_lg and C,, In these hab_itats causes high
- pCO2Z, low pH, and low Q,,, conditions to change most rapidly

—— * Indices most relevant for organismal impacts

- 3. Understanding OA effects on time scales relevant for organisms will help identify
times of synchronous threshold exceedance and OA-sensitive life stages

How does magnitude and duration of threshold exceedance translate into
organismal/ecosystem impacts??

Background Observations + OA Simulations Daily and seasonal variability Organism and management thresholds
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