Zooplankton variability in the Northern Salish Sea over the past 3 decades, and relationships with Coho salmon

Kelly Young
Canada. Department of Fisheries and Oceans, kelly.young@dfo-mpo.gc.ca

Moira Galbraith
Canada. Department of Fisheries and Oceans, moira.galbraith@dfo-mpo.gc.ca

Richard Ian Perry
Canada. Department of Fisheries and Oceans, Ian.Perry@dfo-mpo.gc.ca

Follow this and additional works at: https://cedar.wwu.edu/ssec

Part of the [Fresh Water Studies Commons](https://cedar.wwu.edu/ssec), [Marine Biology Commons](https://cedar.wwu.edu/ssec), [Natural Resources and Conservation Commons](https://cedar.wwu.edu/ssec), and the [Terrestrial and Aquatic Ecology Commons](https://cedar.wwu.edu/ssec).

Young, Kelly; Galbraith, Moira; and Perry, Richard Ian, "Zooplankton variability in the Northern Salish Sea over the past 3 decades, and relationships with Coho salmon" (2018). *Salish Sea Ecosystem Conference*. 403.

This Event is brought to you for free and open access by the Conferences and Events at Western CEDAR. It has been accepted for inclusion in Salish Sea Ecosystem Conference by an authorized administrator of Western CEDAR. For more information, please contact westerncedar@wwu.edu.
Zooplankton variability in the Northern Salish Sea over the past 3 decades, and relationships with Coho salmon

Kelly Young¹, Moira Galbraith¹, Ian Perry¹,²
Fisheries and Oceans Canada
 1- Institute of Ocean Sciences, Sidney
 Kelly.Young@dfo-mpo.gc.ca
 Moira.Galbraith@dfo-mpo.gc.ca
 2- Pacific Biological Station, Nanaimo
 Ian.Perry@dfo-mpo.gc.ca

Young et al., Salish Sea Ecosystem Conference, Seattle, 5 April 2018
Plankton project main objectives:

1. What are the **seasonal patterns** of zoo/ichthyoplankton species **composition, abundance, and biomass** in the northern Salish Sea areas?

2. How do these properties **vary with changes** in physical conditions?

3. How do variations in these properties **influence the marine growth and survival of juvenile salmon** in these areas?

Food supply and quality

Match-Mismatch

Young et al., Salish Sea Ecosystem Conference, Seattle, 5 April 2018
Objectives

Work is In Progress
Analyses and sampling are continuing

Objectives for this presentation:

1) Describe recent (2015 - 2017) patterns of zooplankton for Central Strait of Georgia;

2) Describe patterns of zooplankton for Central Strait of Georgia among years (1995-2017);

3) Compare long-term (1990-2017) zooplankton patterns in Central and Northern Strait of Georgia with Coho marine survival patterns in this region.

Young et al., Salish Sea Ecosystem Conference, Seattle, 5 April 2018
Total plankton biomass (g DryWt/m²) – biomass peaks in June-July

2015 by month

2016 by month

2017 by month

Blue dots are means

GEO1 (central SoG) 2017

Young et al., Salish Sea Ecosystem Conference, Seattle, 5 April 2018
2017 Taxonomic abundance & Biomass

Mostly copepods by abundance (blue colours)

More euphausiids (yellow), amphipods (red) and jelly (green) by biomass
Central Strait of Georgia – total zooplankton biomass (log$_{10}$ g/m2)

Abundance

Biomass Seasonal Cycle

Biomass

Biomass Annual Anomalies

Young et al., Salish Sea Ecosystem Conference, Seattle, 5 April 2018
Central Strait of Georgia – Calanoid copepod biomass anomalies

Cumulative Annual Anomalies

Year

1995 2017

Young et al., Salish Sea Ecosystem Conference, Seattle, 5 April 2018
Comparisons of zooplankton with Coho marine survival

Strait of Georgia Coho PC1 (90% of variance)
Big Qualicum
Inch Creek
Quinsam
Black Creek (wild)

Marine survival vs Ocean Entry year

Dashed line represents linear trend

Data courtesy Jim Irvine
Residuals after removing the decreasing linear trend from the PC1 Coho marine survivals

Biomass anomalies of key juvenile Coho prey (Crabs, Amphipods, Shrimp: represented by Class Malacostraca)

Young et al., Salish Sea Ecosystem Conference, Seattle, 5 April 2018
Residuals from Coho marine survival PC1 are not correlated with Class Malacostraca (Crabs, Amphipods, Shrimp) biomass anomalies: p=0.09
Using all data, a multiple linear regression with
Residuals from Coho marine survival PC1 = f{ Class Malacostraca Biomass anomaly, North Pacific Gyre Oscillation (NPGO) Index } produces a significant relationship:

\[R^2_{adj} = 0.38 \]

\[P\text{-value} = 0.02 \]
Summary

1. **Zooplankton biomass peaks in the summer** months (June-July) (most plankton sampling programs have focussed on Spring);

2. **Total zooplankton biomass** in Central Strait of Georgia has been increasing since 2014; 2017 is similar to that during the late 1990’s;

3. Annual biomass anomalies of **Calanoid copepods display a U-shaped pattern**, with minima during 2003-2010; Annual biomass patterns of **gelatinous plankton** have been increasing since 1995;

4. The **residuals of Coho salmon marine survival** (i.e. with the declining trend from 1990 to 2010 removed) are **significantly related** to a combination of the annual biomass anomalies of their preferred crustacean zooplankton prey (a local influence), and the **North Pacific Gyre Oscillation Index** (a large-scale influence). Zooplankton prey is the more important independent variable in this relationship.

5. A consistent zooplankton monitoring program in the Salish Sea can assist with projections of future abundances of juvenile salmon.
With thanks to:

Pacific Salmon Foundation

Crew of the *MV Salacia* – Capt John Plant, crew Thomas Plant, Piper Harris

DFO staff: Mark Belton, Glenn Cooper, Melissa Hennekes, Nina Nemcek, Doug Yelland, Marie Robert, Peter Chandler, Tamara Fraser, Kenny Scozzafava, Steve Romaine, Germaine Gatien

… and many others!