Regional and temporal variability in Puget Sound zooplankton: bottom-up links to juvenile salmon

Julie Keister
University of Washington, jkeister@u.washington.edu

Julia Bos
Washington (State). Department of Ecology, jbos461@ecy.wa.gov

Betheliee Herrmann
University of Washington, blh1972@u.washington.edu

Mya Keyers
Washington (State). Department of Ecology, mkey461@ecy.wa.gov

Christopher Krembs
Washington (State). Department of Ecology, ckre461@ecy.wa.gov

See next page for additional authors

Follow this and additional works at: https://cedar.wwu.edu/ssec

Part of the *Fresh Water Studies Commons, Marine Biology Commons, Natural Resources and Conservation Commons, and the Terrestrial and Aquatic Ecology Commons*

Keister, Julie; Bos, Julia; Herrmann, Betheliee; Keyers, Mya; Krembs, Christopher; Mickett, John; Newton, J. A. (Jan A.); Reuf, Wendi; and Winans, Amanda, "Regional and temporal variability in Puget Sound zooplankton: bottom-up links to juvenile salmon" (2018). *Salish Sea Ecosystem Conference*. 412. https://cedar.wwu.edu/ssec/2018ssec/allsessions/412

This Event is brought to you for free and open access by the Conferences and Events at Western CEDAR. It has been accepted for inclusion in Salish Sea Ecosystem Conference by an authorized administrator of Western CEDAR. For more information, please contact westerncedar@wwu.edu.
Speaker
Julie Keister, Julia Bos, Bethellee Herrmann, Mya Keyers, Christopher Krembs, John Mickett, J. A. (Jan A.) Newton, Wendi Reuf, and Amanda Winans

This event is available at Western CEDAR: https://cedar.wwu.edu/ssec/2018ssec/allsessions/412
Regional and temporal variability in Puget Sound zooplankton

Julie Keister, Julia Bos, BethElLee Herrmann, Christopher Krembs, Mya Keyzers, John Mickett, Jan Newton, Wendi Reuf, Amanda Winans, and numerous partners.
Puget Sound Zooplankton Monitoring Program
Initiated in 2014 to address hypotheses of bottom-up controls on salmon survival.

Provides data on:

1) Response of zooplankton community to environmental change.

2) Patterns in prey availability for salmon and other fish and seabirds.

Fills long-standing data gap for fishery and ecosystem modelers and managers.
Sampling Methods:

At most locations:

Bi-weekly sampling March-October, 2014-2017
- + Year-round sampling in Central Basin by King County

- **Vertical net tows**
 - Full water column tows
 - 60-cm dia., 200-µm mesh
 - Targets smaller, diverse taxa
 - Used as indictors of environmental changes

- **Oblique bongo net tows**
 - Upper 30 m
 - 60-cm dia., 335-µm mesh
 - Targets larger taxa
 - Used as indictors of salmon prey fields
Late 2014 = Intrusion of “The Blob” into the Salish Sea
Water column heat content

<table>
<thead>
<tr>
<th>Region</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
<th>2016</th>
<th>2017</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7-12</td>
<td>7-12</td>
<td>6-12</td>
<td>7-12</td>
<td>7-12</td>
<td>7-12</td>
<td>7-12</td>
</tr>
<tr>
<td>San Juan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strait of</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Juan de Fuca</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>North Sound</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Whidbey Basin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hood Canal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Central Sound</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>South Sound</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Dark red** = higher than expected (> *IQR*)
- **Red** = higher than previous measurements
- **Dark gray** = expected (= *IQR*)
- **Gray** = no data
- **Green** = lower than expected (< *IQR*)
- **Light green** = lower than previous measurements

IQR = Interquartile Range (25th – 75th percentiles), n = 17
Juvenile Chinook salmon growth and size:
Tended to be lower and more variable in 2014 than 2015

IGF-1 index of growth by region

N. Whidbey juvenile salmon size

Chamberlain et al. 2017

Courtesy of C. Greene et al., NOAA
How was this big variability in years reflected in the zooplankton?
Total zooplankton biomass (vertical net tows): 2015-16 biomass was high. Big differences among regions.
Copepod biomass:
Comprises most of the total biomass.
Juvenile Salmon Prey Field Index

(Subtle) increase during warm years overall, but mixed.
Crab larvae biomass (vertical net tows):

San Juan Islands

Cumulative Biomass (mg C m\(^{-3}\))

Admiralty Inlet

Central Basin

South Sound

Cumulative Biomass (mg C m\(^{-3}\))
Siphonophore Biomass

Large decreases during warm years
Noctiluca Abundances

Decreased during warm years
Conclusions

• Puget Sound zooplankton monitoring began just prior to the warmest years on record.

• Total zooplankton and biomass of important fish prey were higher in 2015-16 than 2014.

• Biomass of some “unfavorable” taxa declined during the warm years.

• Large regional variability observed.

• Funding beyond 2019 has not been secured!
Partnerships & Funding
Many rare taxa observed in 2015-2017

<table>
<thead>
<tr>
<th>Genus Species</th>
<th>2014</th>
<th>2015</th>
<th>2016</th>
<th>2017</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copepod</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Candacia bipinnata</td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
<td>Bellingham, Central Basin, South Sound</td>
</tr>
<tr>
<td>Clausocalanus</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>Bellingham</td>
</tr>
<tr>
<td>Clytemnestra rostrata</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>Bellingham</td>
</tr>
<tr>
<td>Eucalanus californicus</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>Bellingham, San Juan</td>
</tr>
<tr>
<td>Euchirella pulchra</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>Bellingham, San Juan, Whidbey, Central Basin</td>
</tr>
<tr>
<td>Mesocalanus tenuicornis</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>Bellingham, San Juan</td>
</tr>
<tr>
<td>Pleuromamma abdominalis</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td>South PS</td>
</tr>
<tr>
<td>Scaphocalanus brevicornis</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>Central Basin, South Sound</td>
</tr>
<tr>
<td>Scolechthricella ovata</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>N Hood Canal</td>
</tr>
<tr>
<td>Candacia bipinnata</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>Bellingham, Whidbey, Central Basin, N&S Hood Canal</td>
</tr>
<tr>
<td>Candacia bipinnata</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>Throughout</td>
</tr>
<tr>
<td>Emerita analoga</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>Main PS</td>
</tr>
<tr>
<td>Nematoscelis difficilis</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>San Juan, Central Basin</td>
</tr>
<tr>
<td>Sergestes similis</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>San Juan, Admiralty</td>
</tr>
<tr>
<td>Thaliacean</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>Bellingham, Central Basin, South Sound</td>
</tr>
</tbody>
</table>

* = species seen only once; x= not present; **Bold** = species observed off Oregon during the warming years of 2014-2016.