April 2018

Fine-scale taxonomic and spatiotemporal variability in the energy density of prey for juvenile Chinook salmon (Oncorhynchus tshawytscha)

Jacob Weil
Univ. of Victoria, Canada, jdcweil@uvic.ca

Will Duguid
Univ. of Victoria, Canada, willduguid@Hotmail.com

Francis Juanes
Univ. of Victoria, Canada, juanes@uvic.ca

Follow this and additional works at: https://cedar.wwu.edu/ssec

Part of the [Fresh Water Studies Commons](https://cedar.wwu.edu/freshwaterstudies), [Marine Biology Commons](https://cedar.wwu.edu/marinebiology), [Natural Resources and Conservation Commons](https://cedar.wwu.edu/naturalresourcesconservation), and the [Terrestrial and Aquatic Ecology Commons](https://cedar.wwu.edu/terrestrialaquaticecology)

Weil, Jacob; Duguid, Will; and Juanes, Francis, "Fine-scale taxonomic and spatiotemporal variability in the energy density of prey for juvenile Chinook salmon (Oncorhynchus tshawytscha)" (2018). *Salish Sea Ecosystem Conference*. 421.

This Event is brought to you for free and open access by the Conferences and Events at Western CEDAR. It has been accepted for inclusion in Salish Sea Ecosystem Conference by an authorized administrator of Western CEDAR. For more information, please contact westerncedar@wwu.edu.
Fine-scale taxonomic and spatiotemporal variability in the energy density of prey for juvenile Chinook Salmon (Oncorhynchus tshawytscha)

Jacob Weil – MSc Student – Juanes Lab
University of Victoria
Critical Size/Period Hypothesis

- There are 2 periods of high mortality for juvenile salmon:
 - Ocean Entry (Spring): Predation-based mortality
 - First Marine Winter: Growth-based mortality
Assessing Growth

• Growth ~ prey quantity + prey quality
• Currently we assess quality by:

<table>
<thead>
<tr>
<th>Prey Proportion in Diet</th>
<th>Energy Density (J/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insect</td>
<td>Hyperiid</td>
</tr>
<tr>
<td>Hyperiid</td>
<td>Gammarid</td>
</tr>
<tr>
<td>Gammarid</td>
<td>Fish</td>
</tr>
<tr>
<td>Fish</td>
<td>Euphausiid</td>
</tr>
<tr>
<td>Euphausiid</td>
<td>Decapod Larvae</td>
</tr>
<tr>
<td>Decapod Larvae</td>
<td>Cephalopod</td>
</tr>
</tbody>
</table>

Duguid and Juanes 2017
Assessing Growth

• Growth \sim \text{prey quantity} + \text{prey quality}
• Currently we assess quality by:
• BUT... when we do this we assume:

\begin{align*}
\text{Hyperia medusarum} &= \text{Hyperoche medusarum} \\
\text{Themisto pacifica} &= \end{align*}
Research Questions

i) Does energy density vary between similar species of invertebrate prey?

Hyperia medusarum = Hyperoche medusarum = Themisto pacifica
Research Questions

i) Does energy density vary between similar species of invertebrate prey?

ii) Does energy density of prey vary throughout a season?
Research Questions

i) Does energy density vary between similar species of invertebrate prey?

ii) Does energy density of prey vary throughout a season?

iii) Does energy density of prey vary spatially?
Methods
Methods

- Species Identification
Methods

i) Does energy density vary between similar species of invertebrate prey?
 • What is the best way to assess energy density?
Building A Model

- % Ash-free dry weight is highly correlated to energy density

Wet Weight	Dry Weight	Ash Weight
[peaches] | [dried peaches] | [ash]

Trudel and Weil. *In Prep*
Building A Model

% Ash-free dry weight is highly correlated to energy density.

Trudel and Weil. *In Prep*
Results

![Graph showing energy density for different crab families](image)

- **Crab Zoea**
- **Crab Megalope**

Family
- Cancridae
- Grapsidae
- Xanthidae
- Majidae
- Paguridae
- Porcellanidae

Energy Density (J/g)
- 5000
- 4000
- 3000
- 2000
- 1000
Results

Amphipods

Energy Density (J/g)

Species

C. challengeri

Hyperocoe medusarum

T. pacifica

Hyperia medusarum
$H. \text{medusarum}$ Sex Differences

Energy Density (J/g Wet Weight)

- Female
- Male

Sex

2100 2200 2300 2400 2500 2600 2700
Research Questions

i) Does energy density vary between similar species of invertebrate prey?
Preliminary Conclusion

i) **YES!** Energy density appears to vary between similar species of invertebrate prey

Hyperia medusarum

≠

Hyperoche medusarum

≠

Themisto pacifica
Research Questions

i) Does energy density vary between similar species of invertebrate prey?

ii) Does energy density of prey vary throughout a season?
Results

Temporal Changes - T. pacifica

Energy Density (J/g)

April May June July August

Month

3400 3600 3800 4000
Preliminary Conclusion

ii) Does energy density of prey vary throughout a season?

YES! Energy density appears to vary temporally.
Research Questions

i) Does energy density vary between similar species of invertebrate prey?

ii) Does energy density of prey vary throughout a season?

iii) Does energy density of prey vary spatially?
Results

Spatial Differences - T. pacifica

Energy Density (J/g)

Sampling Location

Maple Bay Cowichan Bay Saanich Inlet
Research Questions

i) Does energy density vary between similar species of invertebrate prey?
 • Preliminary results suggest yes
 • Tied to life history

ii) Does energy density of prey vary throughout a season?
 • Preliminary results suggest yes

iii) Does energy density of prey vary spatially?
 • Not on a fine spatial scale
How Much Does It Matter?

• Goal: To determine to what degree variability will affect growth?

\[G = \frac{dW}{W \cdot dt} = p \left[C_{\text{max}} \cdot \left(\frac{CAL_z}{CAL_f} \right) \right] \] (Trudel et al. In press)
Thank You

Supervisor: Dr. Francis Juanes
Field Assistants: Jessica Qualley, Katie Innes, Hailey Davies
Committee Members: Dr. Rana El-Sabaawi, Dr. John Dower
Special Thanks: Will Duguid, Moira Gailbraith