Density-dependent and landscape effects upon estuary rearing in Chinook salmon: insights from long-term monitoring in four Puget Sound estuaries

Correigh Greene
Northwest Fisheries Science Ctr., United States, correigh.greene@noaa.gov

Eric Beamer
Skagit River System Cooperative, United States, ebeamer@skagitcoop.org

Rich Henderson
Skagit River System Cooperative, United States, rhenderson@skagitcoop.org

Joshua Chamberlin
Northwest Fisheries Science Ctr., United States, Joshua.chamberlin@noaa.gov

Jason Hall
Northwest Fisheries Science Ctr., United States, Jason.Hall@noaa.gov

Follow this and additional works at: *https://cedar.wwu.edu/ssec*

Part of the *Fresh Water Studies Commons, Marine Biology Commons, Natural Resources and Conservation Commons, and the Terrestrial and Aquatic Ecology Commons*
Speaker
Correigh Greene, Eric Beamer, Rich Henderson, Joshua Chamberlin, Jason Hall, Joseph Anderson, Matthew Pouley, Melanie Davis, Sayre Hodgson, and Christopher Ellings

This event is available at Western CEDAR: https://cedar.wwu.edu/ssec/2018ssec/allsessions/424
Density-dependent and landscape effects upon estuary rearing in Chinook salmon: Insights from long-term monitoring in four Puget Sound estuaries

Correigh Greene & Josh Chamberlin
NOAA Fisheries, NWFSC, Seattle, WA
Eric Beamer
Skagit River System Cooperative, La Conner, WA
Acknowledgements

Co-authors
Casey Rice (NWFSC)
Rich Henderson (SRSC)
Jason Hall (NWFSC)
Kimberly Larsen (USGS)
Joseph Anderson (WDFW)
Matthew Pouley (Tulalip Tribes)
Todd Zackey (Tulalip Tribes)
Evelyn Brown (Lummi Tribe)
Melanie Davis (USGS)
Sayre Hodgson (Nisqually Tribe)
Christopher Ellings (Nisqually Tribe)
Isa Woo (USGS)

Additional assistance
NWFSC
Tim Beechie
George Pess
Kurt Fresh
Anna Kagley
Mindy Rowse

USGS
Lisa Wetzel
Carl Stenberg
Dave Beauchamp & lab
John Takekawa
Glinnys Nakai
Susan de la Cruz

WDFW
Clayton Kinsel
Matt Klungle

Others
Josh Demma (SRSC)
Karen Wolf (SRSC)
Mike Mackay (Lummi Tribe)
Alan Chapman (Lummi Tribe)

Funding
ESRP
NOAA Restoration Center
Tulalip Tribes
Port of Bellingham
Department of Ecology – IMW
Long Live the Kings
Skagit River System Cooperative
Pacific Salmon Implementation
Treaty

Many field workers
Chinook salmon and estuary habitat loss

ESA listing affects natural resources management:
• Critical habitat issues in US
• Potential to shut down fisheries
• Orca food – proposal to increase hatchery production to boost prey
• PSP Vital Sign – road to recovery by 2020

Extensive use of estuaries by juveniles

Current area = 1-55% of historical (PSNERP Change Analysis 2011)
Chinook in estuaries: Which life history types benefit?

Subyearling hatchery (marked) populations
- emergent fry
 - Rear in hatchery (months)
 - migrate through (days)
 - Tidal Delta
 - migrate through (days)
 - Salish Sea Nearshore
 - Hatchery migrant

Wild (unmarked) populations
- emergent fry
 - rear in freshwater
 - several months
 - > 1 year
 - Tidal Delta
 - migrate downstream as fry
 - rear in natal estuary (wks to months)
 - migrate through (days)
 - Salish Sea Nearshore
 - Rear migrant
 - Nearshore Refuge Rearing Fry migrant
 - Tidal Delta Rearing migrant
 - Parr migrant
 - Yearling migrant
Questions

What landscape features influence distribution and abundance of fish?
- Estuary system
- Landscape connectivity
- Habitat types
- Channel types

Does estuary habitat limit population recovery?
- Evaluating density dependence among populations
- Possible hatchery interactions in estuaries
Landscape features

Estuary system

Landscape connectivity

Channel type

Wetland habitat type

Nooksack
Skagit
Snohomish
Nisqually
Landscape features

Estuary system

Landscape connectivity

Channel type

Wetland habitat type

Nooksack
Skagit
Snohomish
Nisqually

Offchannel
Distributary
Landscape features

Estuary system

Landscape connectivity

Channel type

Wetland habitat type

- Nooksack
- Skagit
- Snohomish
- Nisqually

Forest ed riverine tidal (FRT)
- Estuarine emergent marsh (EEM)
- Estuarine forest transition (EFT)
Hatchery vs natural origin fish

Migrant fry

Hatchery releases

Outmigrants/ha of estuary channel

Outmigration year

- Nisqually
- Nooksack
- Skagit
- Snohomish
System differences
Landscape connectivity

![Landscape Connectivity Graphs](image)
Channel & habitat types

FRT = Forested riverine tidal
EFT = Estuarine forest transition
EEM = Estuarine emergent marsh
Density-dependent relationships

UM Chinook density (fish/ha)

Fry outmigrants/channel area (fish/ha)

- Snohomish
- Nisqually
- Skagit
- Nooksack
Testing for density dependence

Estuary productivity = **Average annual estuary density**
\[\text{Migrant fry/channel area} \]

\[\log_e(d/f) = \log_e(a) + bf \]

\[\text{Density-dependent} \]

\[\text{Density-independent} \]

Migrant fry/estuary channel area (fish/ha)
Density-dependent relationships

Outmigrant fry / channel area (ha)

$log_e(\text{Estuary productivity})$

Other population traits exhibiting density dependence in the Skagit:

- Estuary growth and size
- Residence time in estuary
- Proportion of migrants entering Puget Sound as fry
- Smolt-adult return rate
Potential interactions with hatchery fish

Additional analyses indicate:
- Bioenergetic models – high consumption demand by hatchery fish in 3 estuaries
- Seasonal declines in unmarked fish after hatchery releases
Conclusions

What landscape features influence distribution and abundance of fish?
• Estuary system
• Landscape connectivity
• Habitat types
• Channel types
• Context-dependent effects

Does estuary habitat limit population recovery?
• Evidence for density-dependent interactions at large outmigrations
• These levels were not observed in 2 populations

• Densities of unmarked fish negatively tracked hatchery releases
• Hatchery releases regularly surpass estimated maximum densities
Thanks!
Question:
What landscape features influence annual densities of unmarked salmon?

Four main effects:
- Estuary System (Nooksack, Skagit, Snohomish, Nisqually)
- Landscape connectivity (covariate)
- Habitat type (Forested riverine tidal, estuarine forest transition, estuarine emergent marsh)
- Channel type (Off-channel, distributary)

Interactions of main effects:
- System * connectivity
- System * habitat type
- System * channel type
- Connectivity * habitat type
- Connectivity * channel type
Statistical analysis

Question:
Does estuary habitat limit population recovery?

Remove landscape effects:
 - Landscape connectivity (covariate)
 - Channel type (off-channel, distributary)
 - Connectivity * channel type

Retain system and habitat-dependent variation to test for annual effects of:
 - Migrant fry
 - Hatchery releases
Density-dependent relationships

\[\log_e(\text{Estuary productivity}) \]

\[\text{Outmigrant fry / channel area (ha)} \]
Competition for food?

Prediction: if there is competition, fish should become less selective at higher fish densities

Test: Similarity of diet composition and prey availability

David et al. 2016
Potential interactions with hatchery fish

Possible causes

- “Pied-piper effect”: fish follow large migrations
- Pulsed competition for food during hatchery releases induces early migration
- Introgression of genotypes for rapid outmigration
- Down-river transmission of pathogens from hatcheries

Additional research needed
Consumption demand of hatchery fish
Is estuary habitat limited during large migrations?

- Reconnect off-channel sites
- Improve landscape connectivity
- Increase FRT or EFT habitat conditions

Do hatchery releases dominate migrations?

- Prioritize increasing capacity in multiple habitat types

Consider hatchery management and habitat restoration objectives jointly
- Later releases
- Releases from out-of-system hatcheries

Possible Decision Framework

Are migrations dominated by fry?

- Reduce mortality of adults
- Improve FW habitat conditions

Skagit

Nisqually