Capturing Information on Vessels and Cetaceans: developing a passive monitoring system for Boundary Pass

Lauren McWhinnie
Univ. of Victoria, Canada, lmcwhin@uvic.ca

Patrick O'Hara
Environment and Climate Change Canada, Canada, paddio@uvic.ca

Gregory O'Hagan
Univ. of Victoria, Canada, gregoryohagan@gmail.com

Molly Fraser
Univ. of Victoria, Canada, frasermd21@hotmail.com

Sarah Berry
Univ. of Victoria, Canada, berry.skb@gmail.com

See next page for additional authors

Follow this and additional works at: https://cedar.wwu.edu/ssec

Part of the Fresh Water Studies Commons, Marine Biology Commons, Natural Resources and Conservation Commons, and the Terrestrial and Aquatic Ecology Commons

McWhinnie, Lauren; O’Hara, Patrick; O’Hagan, Gregory; Fraser, Molly; Berry, Sarah; Smallshaw, Leh; Serra-Sogas, Norma; and Canessa, Rosaline, "Capturing Information on Vessels and Cetaceans: developing a passive monitoring system for Boundary Pass" (2018). Salish Sea Ecosystem Conference. 430.
https://cedar.wwu.edu/ssec/2018ssec/allsessions/430

This Event is brought to you for free and open access by the Conferences and Events at Western CEDAR. It has been accepted for inclusion in Salish Sea Ecosystem Conference by an authorized administrator of Western CEDAR. For more information, please contact westerncedar@wwu.edu.
Speaker
Lauren McWhinnie, Patrick O'Hara, Gregory O'Hagan, Molly Fraser, Sarah Berry, Leh Smallshaw, Norma Serra-Sogas, and Rosaline Canessa

This event is available at Western CEDAR: https://cedar.wwu.edu/ssec/2018ssec/allsessions/430
Capturing Information on Vessels and Cetaceans: a passive monitoring system for Boundary Pass

Dr. Lauren McWhinnie (lmcwhin@uvic.ca), Dr. Patrick O’Hara, Gregory O’Hagan, Sarah Berry, Ben Hendricks, Leh Smallshaw, Molly Fraser, Norma Serra-Sogas and Dr. Rosaline Canessa
Lecture Overview

• Boundary Pass
• Acoustic Data Collection
• Automatic Identification System (AIS) data
• Photographic Observation Study (POS)
• Early Findings...
• Future Work and Research Goals
Boundary Pass

Location:

The Issue: This passage is a bottleneck for both cetaceans and vessels, as such there are significant concerns related to vessel disturbance, particularly from marine noise.

The Goal: Using passive data collection techniques, quantify the amount of vessel traffic (both AIS and non-AIS) and marine mammal presence within Boundary Pass.
Acoustic Data Collection

Location:

Monarch Head - 48N 45’ 45.997” 123W 05’ 05.461” -20 m depth
East Point - 48N 46’ 49.501” 123W 03’ 5.4” -27m depth

Type: icListen HF hydrophones by Ocean Sonics
Configuration: 128000 samples per sec – 10Hz-50kHz bandwidth
24bit resolution – 48dB to 175 dB re 1 uPa
Calibration: 0.1Hz to 200kHz
Early Findings...Hydrophones
Early Findings...Hydrophones

Killer Whale Detections 2016

Killer Whale Detections 2017

- East Point
- Monarch Head
Automatic Identification System (AIS) Data
Early Findings..AIS
Photographic Observation Study (POS)

- Single board Raspberry Pi 3 Linux CPU.
- Canon DSLR controlled by a Python script.
- Writing data to external HDD.
- Automatic restart to combat power outages.
- Enclosed in a weather proof box.
- Burst of three photos every minute during daylight hours.
Early Findings...POS

No. of Days with Image Data

<table>
<thead>
<tr>
<th>Month</th>
<th>No. of Days in the Month</th>
</tr>
</thead>
<tbody>
<tr>
<td>November</td>
<td>11</td>
</tr>
<tr>
<td>December</td>
<td>30</td>
</tr>
<tr>
<td>January</td>
<td>30</td>
</tr>
<tr>
<td>February</td>
<td>29</td>
</tr>
<tr>
<td>March</td>
<td>18</td>
</tr>
<tr>
<td>April</td>
<td>1</td>
</tr>
<tr>
<td>May</td>
<td>30</td>
</tr>
<tr>
<td>June</td>
<td>30</td>
</tr>
<tr>
<td>July</td>
<td>30</td>
</tr>
<tr>
<td>August</td>
<td>30</td>
</tr>
<tr>
<td>September</td>
<td>30</td>
</tr>
<tr>
<td>October</td>
<td>15</td>
</tr>
</tbody>
</table>
Coupling of the Camera and Hydrophone Data

![Graph showing ambient noise level and recording consistency over time. The graph displays peaks and troughs in ambient noise and spikes in detections, with a particular focus on the 6th Sep 2017 data.]
Coupling of the Camera and Hydrophone Data
Future Work and Research Goals

• Coupling the hydrophone, camera and AIS data
• Addition of video, night vision and infrared sensors
• AIS speed assessment
• Development of vessel auto-detection software
Automatic Identification Software
Many thanks again to all our amazing collaborators

Thank You for listening!

Any Questions?