Apr 6th, 8:45 AM - 9:00 AM

Evaluating common trends in Chinook density and the influence of temperature and salinity patterns among distributary channels in a large river estuary to aid evaluation, planning, and prioritization of restoration activities

Joshua Chamberlin
NOAA Northwest Fisheries Science Ctr., United States, joshua.chamberlin@noaa.gov

Jason E. Hall
NOAA Northwest Fisheries Science Ctr., United States, jason.hall@noaa.gov

Todd Zackey
Tulalip Tribes Natural Resources, United States, tzackey@tulaliptribes-nsn.gov

Frank Leonetti
Snohomish County, Surface Water Management, United States, frank.leonetti@snoco.org

Michael Rustay
Snohomish County, Surface Water Management, United States, mike.rustay@snoco.org

Follow this and additional works at: https://cedar.wwu.edu/ssec https://cedar.wwu.edu/ssec/2018ssec/allsessions/440

Part of the Fresh Water Studies Commons, Marine Biology Commons, Natural Resources and Conservation Commons, and the Terrestrial and Aquatic Ecology Commons

This Event is brought to you for free and open access by the Conferences and Events at Western CEDAR. It has been accepted for inclusion in Salish Sea Ecosystem Conference by an authorized administrator of Western CEDAR. For more information, please contact westerncedar@wwu.edu.
How landscape patterns in Chinook distribution can inform restoration effectiveness and prioritization in a large river delta.

Joshua Chamberlin¹, Jason Hall², Todd Zackey³, Frank Leonetti⁴, Michael Rustay⁴, and Casimir Rice¹

¹ NOAA Fisheries, NWFSC, Fish Ecology, Watershed Program, Mukilteo Research Station
² Cramer Fish Sciences, Issaquah, WA
³ Tulalip Tribes, Natural Resources Division
⁴ Snohomish County, Surface Water Management
The Snohomish River Estuary

Habitat loss: Historic vs. Current
≈50% of Historic Habitat Extent

High Restoration Potential

Legend
- Current tidal wetlands
- Restoration Projects
- Historic tidal wetland extent
• Stratified the landscape
• Extensive and Intensive fishing effort
• Continuous monitoring of temperature and salinity

Snohomish Estuary Monitoring Sampling Design
Spatial And Temporal Distribution Patterns

Snohomish Estuary Monitoring

Trend 1

Trend 2

Time
Spatial And Temporal Distribution Patterns

Snohomish Estuary Monitoring

Normalized Mean Chinook Density (#fish/ha)

State 1

State 2

Tidal Habitat Distribution in Snohomish estuary
Temperature Patterns

Snohomish Estuary Monitoring

January
February
March
April

May
June
July
August

September
October
November
December

Average Temp (C)

0.0 - 1.0
1.1 - 2.0
2.1 - 3.0
3.1 - 4.0
4.1 - 5.0
5.1 - 6.0
6.1 - 7.0
7.1 - 8.0
8.1 - 9.0
9.1 - 10.0
10.1 - 11.0
11.1 - 12.0
12.1 - 13.0
13.1 - 14.0
14.1 - 15.0
15.1 - 16.0
16.1 - 17.0
17.1 - 18.0
18.1 - 19.0
19.1 - 20.0

2 km
Temperature Effects on Distribution

Snohomish Estuary Monitoring

Mean Monthly Surface Temperature (C)

Mean Surface Temperature (C)

Chinook density (#fish/ha)

Temperature (C)

2012 2013 2014 2015
Conclusions

• Spatial/Temporal patterns in Chinook density captured by two trends
 • Pulsed outmigration and rearing signals
 • Rearing pattern coincides with areas of available habitat
• Temperature determines how long and how many
Casey Rice

Partners & Funding

Tulalip Tribes: Matt Pouley, Michael Abrahamse, Michelle Totman, & many others

Snohomish County: Frank Leonetti, Michael Rustay, and many others

NWFSC Eric Ward, Mark Scheuerell, Eli Holmes

Acknowledgements

Boots on the Ground

Rockstar Volunteer Craig Wollam!

Barney Boyer VCC Intern

Washington Conservation Corps

Snohomish County

USGS

Washington Department of Veterans Affairs

VCC Intern
Salinity Patterns

Snohomish Estuary Monitoring

JUL-OCT
Extreme Low Flow

NOV-APR
Low Flow

MAY-JUN
High Flow

Legend
- CW3
- 0 - 0.5 ppt
- 0.5 - 5 ppt
- 5 - 18 ppt
- 18 - 30 ppt

Critical Habitat
How can our science help inform restoration planning?

1. How are Chinook salmon distributed throughout the Snohomish River estuary?

2. How does temperature and/or salinity affect Chinook distribution?
2 Trends + Temperature

Trend 1: Seasonal Outmigration

Trend 2: Potential rearing signal