April 2018

High-resolution archival tags provide new insights into the underwater foraging and echolocation behavior of resident killer whales capturing Pacific salmon

Brianna Wright
Fisheries and Oceans Canada, Canada, Brianna.wright@dfo-mpo.gc.ca

Follow this and additional works at: https://cedar.wwu.edu/ssec

Part of the [Fresh Water Studies Commons](https://cedar.wwu.edu/ssec), [Marine Biology Commons](https://cedar.wwu.edu/ssec), [Natural Resources and Conservation Commons](https://cedar.wwu.edu/ssec), and the [Terrestrial and Aquatic Ecology Commons](https://cedar.wwu.edu/ssec)

Wright, Brianna, "High-resolution archival tags provide new insights into the underwater foraging and echolocation behavior of resident killer whales capturing Pacific salmon" (2018). *Salish Sea Ecosystem Conference*. 454.

This Event is brought to you for free and open access by the Conferences and Events at Western CEDAR. It has been accepted for inclusion in Salish Sea Ecosystem Conference by an authorized administrator of Western CEDAR. For more information, please contact westerncedar@wwu.edu.
Dtags as a Tool for Behavioural Studies of Resident Killer Whales

Brianna Wright
Biologist – Marine Mammal Program, Pacific Biological Station, Nanaimo, BC
Digital Acoustic Recording Tags (Dtag)

(Johnson & Tyack 2003, IEEE J Ocean Eng)
Dtags deployed on 31 fish-eating northern resident killer whales in British Columbia (2009-2012)

17 true-positive foraging events by 7 individuals: 9 Chinook, 6 chum, 2 coho
probable point of fish capture

Salmon foraging dive (201.9 m)

beginning of chase?
Identifying Foraging Dives: Machine Learning

A Dive (>1 m) types were categorized using 16 kinematic variables.
A Dives with prey remains (n=17) used as a training set for iterative LDA.
A Results: 701 = foraging, 10,618 = other behaviours.
Foraging dives are kinematically distinct

foraging dives, n=701 other dives, n=10,618
Whales target depths used by Chinook salmon

Salmon Escape Response:
- Bottom topography
- Visual camouflage
- Air-breathing predator

- **fish swimming depth** (average, tagging studies)
- **foraging dive depth** (maximum, DTAGs)
Pre- versus Post-capture Echolocation Behaviour

During searching/pursuit (pre-capture), killer whales spent a greater proportion of dive time echolocating, and emitted clicks at greater rates.

- Proportion of time spent clicking:
 - Pre-capture: mean = 43%
 - Post-capture: mean = 20%

- Mean number of clicks per second:
 - Pre-capture: mean = 6.2
 - Post-capture: mean = 1.1
Buzzes: Close-range prey targeting

- Trains with >50% clicks having ICIs ≤ 20 ms
- Present in 13 of 17 foraging events: mean=2.5/capture; duration = 5.9 s
- Primarily pre-capture, often at depths >100 m
Crunches: Prey-processing sounds

- Present in 14 of 17 foraging events: mean=3.6/capture
- Primarily post-capture, near the surface
- Salmon typically broken apart prior to being eaten (regardless of prey sharing)
Conclusions: NRKW Dtag Study

- Foraging dives are deeper, higher velocity, involve greater path complexity and more body rotation.
- Max foraging dive depths reflect the deeper distribution of Chinook salmon & salmon escape responses – disturbance mitigation should consider this.
- Prior to fish captures, both click rates and proportion of time spent echolocating were greater.
- Buzzes and crunches may provide acoustic proxies for prey capture attempts and successes: measures of foraging efficiency?
- Concurrent NOAA Dtag data from SRKW provides a valuable opportunity for a comparative foraging study of the two populations.
Acknowledgements

Co-authors: John Ford, Andrew Trites, Graeme Ellis, Volker Deecke, Brian Battaile, Ari Shapiro
Darren Irwin
Mike DeRoos
Annie Ceschi, Bill Weeks & God’s Pocket Resort
Brian Falconer & crew of the SV Achiever
Jim & Mary Borrowman, Orcella Expeditions

Lance Barrett-Lennard
Joe Bauer
Stacy DeRuiter
Andy Edwards
Tony Farrell
Carling Gerlinsky
Uko Gorter
Christophe Guinet
Tom Hurst
Ruth Joy
Barbara Koot
Patrick Miller
Mayuko Otsuki
James Pilkington
Erin Rechsteiner
Filipa Samarra
Eva Stredulinsky
Jared Towers
Beth Volpov
Colin Ware
Walter Zimmer
Elizabeth Zwamborn

Funding & Support:

- Fisheries and Oceans Canada
- Pêches et Océans Canada
- NSERC CRSGN
- UBC
- University of Cumbria
- North Pacific Universities Marine Mammal Research Consortium
- Woods Hole Oceanographic Institution