April 2018

Simulating eutrophication effects in Puget Sound using qualitative network models

Chris Harvey
Northwest Fisheries Science Ctr., United States, chris.harvey@noaa.gov

Kathryn Sobocinski
Long Live the Kings, United States, kathryn.sobocinski@noaa.gov

Follow this and additional works at: https://cedar.wwu.edu/ssec

Part of the [Fresh Water Studies Commons](https://cedar.wwu.edu/ssec), [Marine Biology Commons](https://cedar.wwu.edu/ssec), [Natural Resources and Conservation Commons](https://cedar.wwu.edu/ssec), and the [Terrestrial and Aquatic Ecology Commons](https://cedar.wwu.edu/ssec)

This Event is brought to you for free and open access by the Conferences and Events at Western CEDAR. It has been accepted for inclusion in Salish Sea Ecosystem Conference by an authorized administrator of Western CEDAR. For more information, please contact westerncedar@wwu.edu.
Simulating eutrophication effects in Puget Sound using qualitative network models

Chris Harvey, NOAA NWFSC, Seattle (chris.harvey@noaa.gov)
Kathryn Sobocinski, Long Live the Kings, Seattle
The Salish Sea is a social-ecological system

- A complex, interconnected system of natural and social components
- We understand some of these connections far better than others
- Because we don’t understand all connections, outcomes of large changes (climate, food web, management) are often hard to predict

Adapted from Levin et al. 2016
Graphics by Su Kim (NOAA NWFSC)
Ecosystem models can help address this uncertainty...

...but, these models are data-hungry; how do we handle all of the data-poor interactions?

Ecopath with Ecosim—Harvey et al., 2012 a,b; Busch et al. 2013; Ferriss et al. 2016

Atlantis—Kaplan (NWFSC), Morzaria-Luna and Girardin (LLTK), Fulton (CSIRO) et al., in prep
Qualitative ecosystem models

• Qualitative models increasingly are being used to simulate dynamics of complex systems that have significant data-poor components
 • Bayesian Belief Networks
 • Mental Modeler
 • Qualitative Network Models

• Qualitative Network Models (QNM) are based on community matrices
 • “Nodes” & “Links” (+, − or 0)
 • Randomly draw weight for each link, |0.01 - 1.0|
 • Construct 1000s of randomly drawn matrices
 • Explore press perturbation scenarios among the stable matrices

Melbourne-Thomas et al. 2012, Ecological Monographs 82:505-519
Qualitative ecosystem models

- **Scenario Example: Increase in Carn-1**
 - Randomly draw stable matrices
 - Select n (e.g., 10,000) in which Carn-1 increases
 - What other nodes consistently increase? Decrease?
 - What other nodes are more ambiguous?

- This approach is being used throughout the world, including the Salish Sea (e.g., Reum et al. 2015, Sobocinski et al. 2018)

- QPress package in R available on GitHub

QNMs for eutrophication in Puget Sound

Main Basin
Model simulations

- How does the model system respond to a “press” of eutrophication?

- What tradeoffs appear in the human system?
Results:
Main Basin
(*n = 10,000 simulations per scenario*)

- Eutrophication has profound effect on summer food web
- Productivity routed into dinoflagellates, Noctiluca
- Some declines in aggregate societal nodes
QNMs for eutrophication in Puget Sound

Hood Canal

- Regional economy
- Forestry
- Septic systems
- Fish harvest
- Recreation
- Shellfish harvest
- Conservation objectives

- Water quality
- Restoration costs
- Eutrophication
- Microbes
- Temperature
- Stratification
- Nutrients
- Dissolved oxygen
- Turbidity
- Upwelling
- Inland/PW habitat
- Marine habitat
- Forage fish
- Gelatinous zoops
- Dinoflagellates
- Zooplankton
- Detours
- Benthos
- Predators
- Densmal fish
- Salmon

Arrows indicate the direction of influence or impact.
A summer eutrophication event alone did not cause hypoxia

Upwelling-driven hypoxia caused different system responses

So, combine them...

Results:
Hood Canal
(n = 10,000 simulations per scenario)
Results:

Hood Canal

\[(n = 10,000 \text{ simulations per scenario})\]

• Eutrophication + hypoxia is pretty similar to the hypoxia scenario

• Distinct outcome from Main Basin summer eutrophication

• Consider scales of economies in these 2 basins
The not-so-good conclusions

This is as preliminary as it gets...in fact, this might be whatever comes before “preliminary”. Take this all with a few tablespoons of salt.

Models like this should be developed in collaboration, across disciplines, which I have not done yet.

Don’t blame my co-author!

Next step will be to solicit input from experts (scientists, managers, stakeholders) to ensure models are structured reasonably, ESPECIALLY in the economic, social and governance portions of the models.
Some more hopeful conclusions

Salmon are a challenge to “manage” in the model; also, some big changes only derive from cumulative pressures…that’s all believable!

These models are easy to tailor to appropriate spatiotemporal scales, which facilitates seasonal or across-basin comparisons.

Data-rich nodes can be “calibrated” using the data & models that we have heard about in this session and the rest of this week.

Then the real value of this approach comes in: simulating the data-poor nodes and linkages and bringing full conceptual models to life.