Apr 6th, 10:30 AM - 10:45 AM

The microbiome of the canopy-forming kelps, Nereocystis and Macrocystis, from the outer Olympic Coast to the Puget Sound

Brooke L. Weigel
Univ. of Chicago, United States, brookeweigel@uchicago.edu

Catherine A. Pfister
Univ. of Chicago, United States, cpfister@uchicago.edu

Follow this and additional works at: https://cedar.wwu.edu/ssec
Part of the [Fresh Water Studies Commons](https://cedar.wwu.edu/ssec/freshwaterstudies), [Marine Biology Commons](https://cedar.wwu.edu/ssec/marinebiology), [Natural Resources and Conservation Commons](https://cedar.wwu.edu/ssec/naturalresources), and the [Terrestrial and Aquatic Ecology Commons](https://cedar.wwu.edu/ssec/terrestrialaquaticecology)

This Event is brought to you for free and open access by the Conferences and Events at Western CEDAR. It has been accepted for inclusion in Salish Sea Ecosystem Conference by an authorized administrator of Western CEDAR. For more information, please contact westerncedar@wwu.edu.
The microbiome of the canopy-forming kelps, *Nereocystis* and *Macrocystis*, from the outer Olympic Coast to the Puget Sound

Brooke L. Weigel
Catherine A. Pfister

Committee on Evolutionary Biology
University of Chicago
Chicago, IL USA
Canopy-forming kelps in the Salish Sea

Macrocystis pyrifera
(Perennial)

Nereocystis luetkeana
(Annual)
Epiphytic microbial communities on *Nereocystis* kelp blades

Alphaproteobacteria
Gammaproteobacteria

Microscopy Image Credit: Jessica Mark Welch
Part I: Which microbes live on the blade surfaces of the canopy forming kelps *Nereocystis* and *Macrocystis*, and do they vary across a large spatial gradient?
Kelp forest spatial sampling

Green = *Nereocystis* only
Pink = *Nereocystis* + *Macrocystis*
Kelp forest spatial sampling

At each of the 13 sites:

• Sampled *Nereocystis* \((n = 6)\) and *Macrocystis* \((n = 6)\) blade tissues

• Sampled seawater \((n = 3)\) microbial communities: filtered 1.0 L through a 0.22 µm filter to collect microbes

• Collected environmental data (water temperature, salinity, etc.)

Green = *Nereocystis* only
Pink = *Nereocystis* + *Macrocystis*
Characterizing kelp and seawater microbial communities

Next-generation DNA sequencing:
- 16S rRNA gene
- bacterial/archaeal primers
 (515 F - 806 R)
- Average # of bacterial sequences per sample = 28,000
- Classified as different microbial taxa with the Green Genes database, and clustered into bacterial species with QIIME2
Results
Nereocystis and Macrocystis host significantly different microbial communities

Pairwise PERMANOVA:
pseudo-F = 10.32
$P = 0.001$
Macrocystis microbiome has greater bacterial diversity & evenness of taxa

Average # bacterial species per sample

Macrocystis = 164
Nereocystis = 62
Seawater = 321
Nereocystis and Macrocystis host some distinct microbes, share others.

Nereocystis shares ~50% of unique bacterial taxa with Macrocystis.

Macrocystis shares ~30% of unique bacterial taxa with Nereocystis.

Seawater 7925

Nereocystis 313

Macrocystis 688

Nereocystis shares 100

Macrocystis 107

Nereocystis shares 317

Macrocystis 358
Nereocystis microbial communities have a unique composition at certain sites.
Nereocystis microbial communities have a unique composition at certain sites in Southern Puget Sound.
Nereocystis microbial communities have a unique composition at certain sites.
Spatial variation in the *Nereocystis* microbiome

Significant spatial variation among sites
(PERMANOVA, pseudo-F = 2.40, P = 0.001)
Spatial variation in the *Nereocystis* microbiome

Abundance of *Saprospiraceae* bacteria on *Nereocystis*

Abundance of *Saprospiraceae* bacteria in seawater
Spatial variation in the *Nereocystis* microbiome

- *Saprospiraceae* (phylum *Bacteroidetes*) are significantly more abundant on the outer coast of WA.
- *Saprospiraceae* are known to degrade complex carbon substrates in marine environments (McIlroy and Nielsen 2014).
Spatial variation in the *Nereocystis* microbiome

Abundance of *Hyphomonadaceae* bacteria on *Nereocystis*

Abundance of *Hyphomonadaceae* bacteria in seawater
Spatial variation in the *Nereocystis* microbiome

- **Family Hyphomonadaceae** (class *Alphaproteobacteria*) are more abundant in southern Puget Sound

- *Hyphomonadaceae* are aerobic, heterotrophic, stalked bacteria that often live in oligotrophic waters (Abraham and Rohde 2014)
Part II: how do kelp and their microbes interact, and why should we care?
Kelp provide an abundant carbon resource for microbes

• On average, **14 – 40%** of the carbon fixed by kelp is leaked into the surrounding seawater as dissolved organic carbon (Abdullah and Fredriksen 2004, Wada et al. 2007, Reed et al. 2015)

• This process has never been measured in *Nereocystis*
Nereocystis blade dissolved organic carbon (DOC) production using 13Bicarbonate

$H^{13}CO_3^-$

13DOC
Nereocystis blades exude 16% of total fixed carbon as dissolved organic carbon.

Kelp

- **Carbon Fixation**
 - $50.7 \text{ µmol L}^{-1} \text{ hr}^{-1}$

- **13DOC Production**
 - $7.9 \text{ µmol L}^{-1} \text{ hr}^{-1}$

During an 8 hour long experiment, kelp fixed & released 13C.

16% of total fixed carbon is exuded as dissolved organic carbon.
Future directions: understand the links between the kelp microbiome, dissolved carbon exudation & nutrient cycling in kelp forests.
Acknowledgements

- Cathy Pfister (UChicago), PhD thesis advisor
- Jessica Mark-Welch (MBL), microscopy imaging of kelp bacteria
- Mark Altabet (UMass), stable isotope experiment advice
- Helen Berry (WA State DNR), Puget Sound kelp collections
- Alisha Friel, Ole Shelton, Jenny Waddell, Anna Kagley and the NOAA Olympic Coast National Marine Sanctuary

- Funding:
 - Phycological Society of America Grants-in-Aid of Research
 - National Geographic Early Career Grant
 - University of Chicago Committee on Evolutionary Biology
EXTRA SLIDES...
(for questions)
Nereocystis vs. Seawater Spatial Variation

Nereocystis Samples

Seawater Samples

Bacterial Class
Spatial variation in the *Macrocystis* microbiome

Significant spatial variation among sites (PERMANOVA, pseudo-$F = 1.98$, $P = 0.001$)
PERMANOVA:
Cape Johnson and Destruction Island microbial communities are the same ($P = 0.16$), all other sites are significantly different ($P < 0.05$)