April 2018

Understanding and managing underwater noise: results from the Haro Strait vessel slowdown trial

Krista Trounce
Vancouver Fraser Port Authority, Canada, Krista.Trounce@portvancouver.com

Follow this and additional works at: https://cedar.wwu.edu/ssec

Part of the Fresh Water Studies Commons, Marine Biology Commons, Natural Resources and Conservation Commons, and the Terrestrial and Aquatic Ecology Commons

https://cedar.wwu.edu/ssec/2018ssec/allsessions/498

This Event is brought to you for free and open access by the Conferences and Events at Western CEDAR. It has been accepted for inclusion in Salish Sea Ecosystem Conference by an authorized administrator of Western CEDAR. For more information, please contact westerncedar@wwu.edu.
Understanding and managing underwater noise: results from the Haro Strait vessel slowdown trial

Krista Trounce
ECHO Project Manager
April 6, 2018
ECHO Program
(Enhancing Cetacean Habitat and Observation)

What? A collaboration with marine transportation industries, conservation groups, scientists, First Nations and Canadian and US governments

When? Convened Nov. 2014

Why? To better understand and reduce the cumulative impacts of commercial vessel activities on at-risk whales throughout Canada’s Pacific south coast
ECHO Program work areas

Advancing projects and initiatives to inform threat reduction

- Prey availability
- Physical Disturbance
- Environmental Contaminants
- Acoustic Disturbance

Design
Operational
Vessel slowdown trial: Overview

Why: The trial aims to better understand the relationship between vessel speed, underwater noise and potential effects on killer whales

Where: ~16 nautical miles through critical whale foraging habitat in Haro Strait

When: Two (lunar) month trial, August 7 - October 6, 2017

What speed: 11 kn through the water

Who: Over 50+ organizations
Vessel slowdown trial: Participation results

951 total piloted transits during trial period

79% intended to participate (752 transits)

60.5% reported participation (578 transits)

44% achieved speed <12 knots STW (421 transits)

Photo: Joan Lopez
Trial results: Reduction in vessel speed and source level (control vs. trial period)

- Reduction in speed (knots)
- Reduction in source level (dB)

<table>
<thead>
<tr>
<th>Type of Ship</th>
<th>Reduction in Speed (knots)</th>
<th>Reduction in Source Level (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Container ships</td>
<td>-7.7</td>
<td>-11.5</td>
</tr>
<tr>
<td>Passenger ships</td>
<td>-6.1</td>
<td>-10.5</td>
</tr>
<tr>
<td>Vehicle carriers</td>
<td>-5.9</td>
<td>-9.3</td>
</tr>
<tr>
<td>Tankers</td>
<td>-2.3</td>
<td>-6.1</td>
</tr>
<tr>
<td>Bulk/general cargo ships</td>
<td>-2.1</td>
<td>-5.9</td>
</tr>
</tbody>
</table>

Source: JASCO Applied Sciences

Note: a 3 dB reduction is roughly equivalent to a 50% reduction in sound intensity.
Trial results: Change in vessel source levels

<table>
<thead>
<tr>
<th>Reduction in broadband noise emissions with speed</th>
<th>Vessel type</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.8 dB/knot</td>
<td>Bulker/general cargo</td>
</tr>
<tr>
<td>2.6 dB/knot</td>
<td>Tanker</td>
</tr>
<tr>
<td>1.7 dB/knot</td>
<td>Cruise</td>
</tr>
<tr>
<td>1.6 dB/knot</td>
<td>Vehicle Carrier</td>
</tr>
<tr>
<td>1.5 dB/knot</td>
<td>Container</td>
</tr>
</tbody>
</table>
Trial results: Change in ambient noise

- **1.2 dB median reduction in all (unfiltered) ambient noise during the trial period**
 - Equals a ~22% reduction in sound intensity
- **2.5 dB median reduction in ambient noise when large commercial vessels within 6km detection range of hydrophone, no small boats, filtered for high wind/current**
 - Equals a ~44% reduction in sound intensity

\[dB = dB \text{ re } 1 \mu Pa\]

Compared two pre-trial control vs. two trial months

Source: SMRU Consulting
Trial results: Vessel noise modelling
Trial results: Vessel noise modelling

Comparison of a container ship

Baseline speed

Trial speed

Source: JASCO Applied Sciences
Trial results: SRKW behavioural response modelling

- 24-hour noise and whale model simulation
- Broadband dose-response curve and residual echolocation masking
- Evaluating potential lost foraging time:
 - Baseline vs. actual trial compliance and speed
 - Other compliance rates and speeds
 - Future traffic scenarios
Next steps

• Final slowdown trial report
 May 2018

• Correlate vessel noise dataset
 with vessel design
 parameters to identify key
 drivers

• Potentially trial other
 mitigation options
Thank you for listening. Questions?

Krista Trounce
ECHO Project Manager
Vancouver Fraser Port Authority
Krista.Trounce@portvancouver.com
www.portvancouver.com/echo
Vessel slowdown trial participants

50+ organizations

AAL Shipping
ACGI Shipping Inc.
BC Coast Pilots
Carnival Cruise Line
Celebrity Cruise Line
CMA CGM
Colley West Shipping Ltd.
COSCO
Crystal Cruises
CSL International
Evergreen Line
Fairmont Shipping (Canada) Ltd.
G2 Ocean
Hamburg Sud
Hapag-Lloyd
Holland America Line
Hyundai America Shipping Agency Inc.
Inchcape Shipping Services
K-Line
Maersk
Mason Agency Ltd.
Mitsui O.S.K. Lines
Montship Inc.
MSC Mediterranean Shipping Company
Navitrans Shipping Agencies West Inc.
Neptune Bulk Terminal
Norton Lilly Vancouver
Norwegian Cruise Line
NYK Line
Oceania Cruises
Oldendorff
OOCL
Pacific Basin Shipping
Pacific North West Ship & Cargo Services Inc.
Ponant
Princess Cruise Line
Ravensdown Shipping Services Ltd.
Robert Reford
Royal Caribbean International Cruise Line
Royal Canadian Navy
SAAM SMIT Vancouver
Saga Welco AS
Seabourn Cruise Line
Seaspan ULC
Sinotrans
Swire Shipping
Trans-Oceanic Shipping
Valles Steamship (Canada) Ltd.
Washington State Ferries
Westward Shipping Ltd.
Westwood Shipping Lines
Wheelhouse Shipping Agency
Wilhelmsen Ships Service
Zim

Photo: M Knight