April 2018

Developing a nearshore geospatial framework for recovery assessment and planning

Jennifer Burke
Puget Sound Partnership, United States, jennifer.burke@psp.wa.gov

Stacy Vynne
Puget Sound Partnership, United States, stacyvynne@psp.wa.gov

Follow this and additional works at: https://cedar.wwu.edu/ssec

Part of the Fresh Water Studies Commons, Marine Biology Commons, Natural Resources and Conservation Commons, and the Terrestrial and Aquatic Ecology Commons

https://cedar.wwu.edu/ssec/2018ssec/allsessions/499

This Event is brought to you for free and open access by the Conferences and Events at Western CEDAR. It has been accepted for inclusion in Salish Sea Ecosystem Conference by an authorized administrator of Western CEDAR. For more information, please contact westerncedar@wwu.edu.
Nearshore Geospatial Framework

Jennifer Burke, Data Systems & GIS Manager
Puget Sound Partnership

April 6, 2018
The Framework Proposal

• Nearshore Salmon Recovery Chapter (Lead Entities)
• Strategic approach to Chinook recovery
• Spatially represent hypotheses about the types and locations of habitats
• Multiple scales
• Nexus of marine, nearshore, and upland
Framework

• **What is a framework?**
 • Integrate spatial dataset
 • Spatial analytical units
 • Multiple nested units of analyses
 • Test hypotheses
 • *Patterns* of degradation
 • *Risk* of future development
 • Nearshore habitat (shoretypes) *relationships* with other attributes; offshore, onshore, or upland
Foundation

- **Concept similar to PSNERP**
 - Framework structured around **drift cells**

- **Updated and consistent drift cell mapping**
 - Estuary and Salmon Restoration Program (ESRP)
 - Learning Projects grant to Coastal Geologic Services, Inc.
 - *More info in next presentation*
 - Incompatible with PSNERP spatial structure

- **Coordination**
 - ESRP and CGS to design the Nearshore Geospatial Framework

- **Improvement from PSNERP**
 - Higher Resolution/Smaller analytical unit – i.e. Shoretypes
NGF – **HUC** – Hydrologic Unit (WA Ecology)

Map credit: Coastal Geologic Services, Inc.
NGF – Basins – updated drift cells

Map credit: Coastal Geologic Services, Inc.
NGF

Map credit: Coastal Geologic Services, Inc.
NGF – **Nearshore** – Shoretype Scale

Integrating adjacent onshore
Integrating adjacent aquatic

100 ft
200 ft
400 ft
200 m
10m depth

Map credit: Coastal Geologic Services, Inc.
NGF – Nearshore Units

Drift cells

Shoretype

Map credit: Coastal Geologic Services, Inc.
Biological Example – Shoretype and Drift cell Scale

Drift Cell Upland Drainage
Strategic Recovery Planning

- Assessment
- Metrics

- Proposed
- Past

- Identify need
- Prioritize

Purpose

NGF
Nearshore Geospatial Framework

Integrated Monitoring Data

Strategic Recovery Planning

Evaluating Recovery Actions

Advocating Actions
Still in Development

• Phase 1 - project initiated
 • What do folks need in terms of scale?
 • What data to integrate?
 • How do folks need data to integrate?

• Phase 2 - Refine
 • Seeking funded

• Support Beach Strategies hypotheses
 • Please participate in Beach Strategies project
 • More info in next talk
Credits

• **Funding**: Thank you Salmon Recovery Council
• **All things Geospatial**: Coastal Geologic Services Inc.
• **Host**: Companion to ESRP’s Beach Strategies
 • *Don’t go anywhere – they are talking next!*