April 2018

Genetic structure of the bull-kelp Nereocystis luetkeana in the Salish Sea

Lily Gierke
Univ. of Wisconsin-Milwaukee, United States, lggierke@uwm.edu

Bobby San Miguel
Univ. of Wisconsin-Milwaukee, United States, sanmigu2@uwm.edu

Tom Mumford
Marine Agronomics LLC, United States, tmumford@u.washington.edu

Filipe Alberto
Univ. of Wisconsin-Milwaukee, United States, falberto@uwm.edu

Follow this and additional works at: https://cedar.wwu.edu/ssec

Part of the [Fresh Water Studies Commons](https://cedar.wwu.edu/ssec/freshwaterstudies), [Marine Biology Commons](https://cedar.wwu.edu/ssec/marinebiology), [Natural Resources and Conservation Commons](https://cedar.wwu.edu/ssec/naturalresources), and the [Terrestrial and Aquatic Ecology Commons](https://cedar.wwu.edu/ssec/terrestrialandaquaticecology)

Gierke, Lily; San Miguel, Bobby; Mumford, Tom; and Alberto, Filipe, "Genetic structure of the bull-kelp Nereocystis luetkeana in the Salish Sea" (2018). *Salish Sea Ecosystem Conference*. 505.

This Event is brought to you for free and open access by the Conferences and Events at Western CEDAR. It has been accepted for inclusion in Salish Sea Ecosystem Conference by an authorized administrator of Western CEDAR. For more information, please contact westerncedar@wwu.edu.
Genetic structure of the Bull-Kelp Nereocystis luetkeana in the Salish Sea

Lily G. Gierke
Filipe Alberto
University of Wisconsin-Milwaukee
Why study genetic connectivity?

• Low connectivity between populations decreases genetic diversity
• Small and fragmented populations are at risk for local extinction
• Important to conserve well connected populations and keep individual numbers high to prevent inbreeding
Bull Kelp
Nereocystis luetkeana

- Brown algae in the order Laminariales
- Found from Alaska to Central California
- Dominant canopy forming kelp in Salish Sea

Kidder, 2006
Bull Kelp history in the Puget Sound

- Puget Sound populations are fragmented with small population size
- Recent declines
- Genetic markers used to estimate gene flow between populations
- Isolated populations at risk of going locally extinct

Berry, 2017
Hypotheses

• Because spores cannot travel far, genetic differentiation will be high in Bull Kelp

• Alternatively, because kelp fragments can raft at the will of sea surface currents genetic differentiation will be correlated with oceanographic distance

• Due to spore limited dispersal, inbreeding will be high within populations.
Methods

- Seven microsatellite markers
- Alleles scored in STRand
Microsatellite allele distribution across sites

- Allele frequencies
- Genetic diversity is a measure of allelic richness and frequencies
• 58 sites from Alaska to central California
Bull Kelp genetic diversity

Allelic richness

Genetic co-ancestry
In summary

• Four genetic co-ancestry groups spanning over 3,500 kilometers
• Lowest allelic richness in Puget Sound and Strait of Georgia
• Juan de Fuca is a genetic break
• Strait of Georgia and Puget Sound share similar environments & similar genetic background
• Distance over water is a poor predictor of differentiation
• A large proportion of sites had significant positive FIS suggesting inbreeding
What drives Bull Kelp genetic differentiation in the Salish Sea?
Isolation by oceanographic distance

- Long distance dispersal events of rafting
- Oceanographic transport can extend dispersal of spores
GNOME (General NOAA Operational MODEL Environment) and the Salish Sea Model

- Uses sea surface current data to map trajectory of oil spills
- Particles were tracked for 14 days
- Thirteen dates of release from July to December 2014
Stepping stone connectivity

• Historical Bull-Kelp distribution in the Salish Sea
• Generated 42 pseudo-sites to model stepping stone connectivity using network analysis
• Oceanographic distance is defined as the network path of least resistance, i.e., the minimum sum of -logProb of transport across all paths
Network Analysis

Genetic differentiation (Jost’s D) Hydrodynamic transport probability
Exploring isolation by environment

- If there is local adaptation, migrants will have lower fitness.
- Nine environmental variables.
 - Taken from NASA’s MODIS AQUIS.
Modeling genetic differentiation as a function of ocean currents and environmental variables

Jost’s D ~ \textit{Isolation by distance} + \textit{isolation by oceanographic transport} + \textit{isolation by environment}

Jost’s D ~ \textit{Sea surface spatial distance} + \textit{oceanographic distance} + \textit{kd490} + \textit{Chla} + \textit{Summer SST}

\[
\text{Adj. } r^2 = 0.388
\]
Conclusions

• Dispersal may not be as limited as previously thought

• Oceanographic distance explains variation in genetic differentiation better than spatial distance and environmental distance

• Partial support for isolation by environment
Acknowledgments

Sampling collaborators:
William Heath, Tom Mumford, Cathy Pfister, Timothy Wootton, Lucas Hart, Helen Berry, Brian Allan, Debra Paros, Louis Druehl, Rich Alvarez, Eleanor Hines Brenda Konar, Jenn Burt, Pete Raimondi, Rob Zielinski, Braeden Schiltroth, Sherryl Bisgrove, Jessica Watson and the team of research at Oregon’s Marine Reserves branch of the Department of Fish and Wildlife, Jeff Gaeckle, Don Canestro, Liam Antrim, Cynthia Catton, Jessica Edwards

Data analysis:
Bobby San Miguel
Lab work: Nelson Coelho
Current data/Salish Sea Model: Tarang Khangaonkar