Age truncation and portfolio effects in Puget Sound Pacific herring

Margaret Siple
School of Aquatic and Fishery Sciences, United States, siplem@uw.edu

Andrew O. Shelton
Northwest Fisheries Science Ctr., United States, ole.shelton@noaa.gov

Tessa B. Francis
Univ. of Washington Tacoma, United States, tessa@uw.edu

Dayv Lowry
Washington Dept. of Fish and Wildlife, United States, dayv.lowry@dfw.wa.gov

Adam P. Lindquist
Washington Dept. of Fish and Wildlife, United States, adam.lindquist@dfw.wa.gov

See next page for additional authors

Follow this and additional works at: https://cedar.wwu.edu/ssec

Part of the [Fresh Water Studies Commons](https://cedar.wwu.edu/ssec/allsessions/551), [Marine Biology Commons](https://cedar.wwu.edu/ssec/allsessions/551), [Natural Resources and Conservation Commons](https://cedar.wwu.edu/ssec/allsessions/551), and the [Terrestrial and Aquatic Ecology Commons](https://cedar.wwu.edu/ssec/allsessions/551)

Siple, Margaret; Shelton, Andrew O.; Francis, Tessa B.; Lowry, Dayv; Lindquist, Adam P.; and Essington, Timothy E., "Age truncation and portfolio effects in Puget Sound Pacific herring" (2018). *Salish Sea Ecosystem Conference*. 551.

This Event is brought to you for free and open access by the Conferences and Events at Western CEDAR. It has been accepted for inclusion in Salish Sea Ecosystem Conference by an authorized administrator of Western CEDAR. For more information, please contact westerncedar@wwu.edu.
Speaker
Margaret Siple, Andrew O. Shelton, Tessa B. Francis, Dayv Lowry, Adam P. Lindquist, and Timothy E. Essington

This event is available at Western CEDAR: https://cedar.wwu.edu/ssec/2018ssec/allsessions/551
Portfolio effects and age truncation in Puget Sound Pacific herring

Siple MC\(^1\), Shelton AO, Francis TB\(^1\), Lowry D, Lindquist AP, Essington TE\(^1\)

\(^1\)University of Washington

\(^2\)NOAA

\(^3\)WA Department of Fish & Wildlife
My goal today

I. Spatial dynamics
II. Demographic changes

Insights about ecology and management
Possible next steps
Can we distinguish groups of spawning sites that fluctuate together?
Panmictic
(all one population)
Genetics (microsatellite markers) - Small et al. 2005

Contaminants - Cherry Point, Semiahmoo Bay - West et al. 2008

Geographic separation - Penttila 2007

All separate

*Multivariate state-space model
Pacific herring are 1.92 times more stable as several subpopulations
Take home points so far

Herring populations in Puget Sound fluctuate independently, at localized scales but seem to share regional drivers.

Spatial diversity is a buffer for predators.

But what are demographic drivers?
Does natural mortality vary more in time or in space?
Methods

Trawl surveys in spawning areas

Age-structured population model

Site-specific recruitment

Fit different structures to test spatial vs. temporal differences in M
Adult mortality has increased since 1972

*Bayesian age-structured model
Shifts in age structure

[Graph showing trends in proportion over age 4 and observed biomass for Cherry Point, Port Gamble, and Squaxin Pass from 1980 to 2000.]
Consequences

1. Spatial diversity acts as a buffer
2. Mortality increases are broad pattern

3. Age truncation may also impact:
 - Increases in population variability
 - Timing and location of spawning
What does this mean about herring ecology and management?

- Big, broad drivers, local responses
- Local responses could be environmental OR behavioral! (see Eleni’s talk!)
- Spatial structure will be important for management
Thank you

Collaborators and coauthors
Kurt Stick
Dayv Lowry
Adam Lindquist
Tessa Francis
Ole Shelton
Tim Essington
Alec MacCall
Essington Lab

Funding
NSF GRFP
SAFS
AFS Western Division
UW College of the Environment
Puget Sound Anglers