Large woody debris protects woody plants from browsing in restoration following Elwha dam removal.

Caelan Johnson

Western Washington University, johns930@wwu.edu

Follow this and additional works at: https://cedar.wwu.edu/ssec

https://cedar.wwu.edu/ssec/2020ssec/allsessions/50

This Event is brought to you for free and open access by the Conferences and Events at Western CEDAR. It has been accepted for inclusion in Salish Sea Ecosystem Conference by an authorized administrator of Western CEDAR. For more information, please contact westerncedar@wwu.edu.
Log clusters facilitate Elwha River revegetation

Aurora Grant, Caelan Johnson, Trevor Mansmith, Kenjo Pollmann
Western Washington University: Huxley College of the Environment

Objective

Examined how presence and orientation of large woody debris (LWD) affects browse of ungulates (deer and elk) on early successional riparian tree species. Results are important for increasing effectiveness of future revegetation and restoration projects.

Methods

- Stratified random sampling
- Each site included:
 - Open area
 - Single log
 - Double logs
 - Log cluster
- Collected in 5 m² plots:
 - Browse intensity
 - Plant species
 - Log height

Results

Figure 4. Browse intensity (number of stems browsed in proportion to total number of stems) in each LWD type.

High browse intensity except in clusters. Clusters decrease browse intensity 250%.

Figure 5. Average percent browse of the three most common species in the enclosing cluster (left) and open (right) treatments. Sample sizes for cluster 30, 16, and 26, for open 96, 133, and 51 respectively.

Clusters reduced browse most effectively for preferred species.

Implications

Browse impedes revegetation success.

Log clusters reduce browser access.

Previous efforts used individual logs to shade saplings. This provided little protection from browse.

Future restoration should place logs in clusters to allow saplings to reach maturity.

Log clusters may be essential to revegetation success.