Reconstructing a century of coastal productivity and predator trophic position in the Salish Sea using archival harbor seal bone.

Megan Feddern
University of Washington, mfeddern@uw.edu

Follow this and additional works at: https://cedar.wwu.edu/ssec

Part of the Fresh Water Studies Commons, Marine Biology Commons, Natural Resources and Conservation Commons, and the Terrestrial and Aquatic Ecology Commons

This Event is brought to you for free and open access by the Conferences and Events at Western CEDAR. It has been accepted for inclusion in Salish Sea Ecosystem Conference by an authorized administrator of Western CEDAR. For more information, please contact westerncedar@wwu.edu.
Reconstructing a century of predator trophic position in WA with archival harbor seal bone

Salish Sea Ecosystem Conference
Megan Feddern
mfeddern@uw.edu

Gordon Holtgrieve, Eric Ward
University of Washington, NOAA NWFSC
Competing Interests in the Salish Sea

1. Recovering predator populations that increase competition with humans for the same resource

2. New tradeoffs that emerge when protected predators consume protected prey, and

3. Multiple predator populations that compete for the same limited prey.
How are harbor seals interacting with the food web?
How do **food web** conditions impact harbor seal trophic position?

- **Low trophic level species abundance**
 - Forage fish (herring), juvenile salmonids

- **High trophic level species abundance**
 - Adult salmon, hake, tomcod

Intraspecific interactions
How does coastal *productivity* (indirectly) impact harbor seal trophic position?

Primary Productivity

NO$_3^-$, NH$_4^+$, urea

Nitrogen availability (anthropogenic)
Compound Specific Stable Isotope Analysis of Amino Acids: Primer

\[TP = \left(\delta^{15}N_{\text{Tr-Sr, seal}} - \text{TEF}_{\text{Tr-Sr,seal}} + 3.4 \right) / \text{TEF}_{\text{Tr-Sr,plankton}} + 1 \]
Analysis of museum specimens for retrospective trophic position and coastal productivity time series

- Trophic position
- $\delta^{15}N_{\text{Phe}}$ (nitrogen sources i.e. anthropogenic)
- $\delta^{13}C$ (phytoplankton growth)

$N = 145$
Sex

- **Trophic Position**
 - Not Significant

- **δ¹⁵N (% Phenyalanine)**
 - Not Significant

Length

- **Trophic Position vs. Standard Length**
 - No trend
Times series for hierarchical linear models

<table>
<thead>
<tr>
<th>Food Web (n = 52)</th>
<th>Productivity (n = 4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Herring Biomass</td>
<td>$\delta^{15}N_{\text{Phe}}$ (nitrogen sources ie. anthropogenic)</td>
</tr>
<tr>
<td>Hake Biomass</td>
<td>$\delta^{13}C$ (phytoplankton growth)</td>
</tr>
<tr>
<td>Chinook Escapement</td>
<td></td>
</tr>
<tr>
<td>Smolt Production (wild and hatchery)</td>
<td></td>
</tr>
<tr>
<td>Chum escapement</td>
<td></td>
</tr>
<tr>
<td>Coho Escapement</td>
<td></td>
</tr>
<tr>
<td>Harbor Seal Population</td>
<td></td>
</tr>
</tbody>
</table>
Food Web

Intraspecific competition

Salish Sea is lower (spatial variability)
Primary Productivity

Productivity impacts

Coefficient Estimate

Primary Productivity impacts

Lower in the food web with more anthropogenic N

δ¹³C
Intercept
Location
δ¹⁵N Phe

fixed
Glu
Asp
Pro
Val
Ala
Above average years = lower in food web
Harbor seal trophic ecology is linked to intraspecific competition, primary productivity, and anthropogenic nitrogen.

- Low trophic level species
- Higher trophic level species

Anthropogenic
- NO_3^-, NH_4^+, urea

Anthropogenic
How are harbor seals interacting with the food web?

- Harbor seal trophic ecology is linked to intraspecific competition, primary productivity, and anthropogenic nitrogen.

- Harbor seal trophic ecology is not static, and responds to changes in the system (bottom-up forces).

- Trophic ecology is spatially variable, and predation pressure exerted on low and high trophic level species varies.
Acknowledgments