Squishy but not useless for energy balance: Energetic value of gelatinous zooplankton from the Salish Sea and adjacent waters

Florian Lüskow
University of British Columbia, flueskow@eoas.ubc.ca

Follow this and additional works at: https://cedar.wwu.edu/ssec

Part of the Fresh Water Studies Commons, Marine Biology Commons, Natural Resources and Conservation Commons, and the Terrestrial and Aquatic Ecology Commons

https://cedar.wwu.edu/ssec/2020ssec/allsessions/87

This Event is brought to you for free and open access by the Conferences and Events at Western CEDAR. It has been accepted for inclusion in Salish Sea Ecosystem Conference by an authorized administrator of Western CEDAR. For more information, please contact westerncedar@wwu.edu.
Squishy but not useless for energy balance: Energetic value of gelatinous zooplankton from the Salish Sea and adjacent waters

Florian Lüskow¹,², Moira D. Galbraith³, Brian P.V. Hunt¹,²,⁴, R. Ian Perry⁵, Evgeny A. Pakhomov¹,²,⁴
¹Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, Canada ²Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, Canada ³Institute of Ocean Sciences, Fisheries and Oceans Canada, Sidney, Canada ⁴Hakai Institute, Heriot Bay, Canada ⁵Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, Canada

E-mail: flueskow@eos.ubc.ca, ORCID: 0000-0002-2100-7012, Poster-ID: 3351

Introduction

- Gelatinous and soft-bodied zooplankton (GZ) are traditionally considered as ‘trophic dead ends’ (Hansson & Norman 1995)
- Due to their low energy contents per wet weight, GZ have been named ‘green tea of the sea’ (Hamilton 2016)
- There is growing awareness of the importance of GZ in marine food webs (Hays et al. 2018) and for various other non-energetic purposes (Thiebot & McInnes 2020)
- Database listing elemental composition, organic and energy contents of various taxa is scattered, incomplete, and superficial in many cases
- We aim at the establishment of a comprehensive region-wide database compiling these data for a wide range of GZ species to inform energy-based food web models

Methods

- For best describing the nutritional value of food items, a combination of several proxies is recommended (Chen & Li 2017; Machovsky-Capuska & Raubenheimer 2020)
- More than 1000 specimens from 33 GZ species were collected on 10 cruises between 2014 and 2019 in the Salish Sea and adjacent waters (Figs. 1 and 2)
- Samples have been collected with Bongo and dip nets, Multinet, and pelagic trawl (Fig. 3)
- Specimens were sized and frozen on board and freeze-dried in the laboratory
- Elemental composition (C, N) was determined in elemental analyser
- Organic content measurement is based on dry matter (500 °C, 24 h)
- Energy content was estimated via published conversion factors (Platt et al. 1969; Schneider 1988) and based on bomb-calorimetry

Results

- Only a set of net types with different mesh sizes allows for huge species sampling variety in near and offshore areas in the present study
- Marked and partly statistically significant differences in organic content and C/N ratio among classes (Figs. 4 and 5) were identified
- Both depend highly on sampled size range (Fig. 6, e.g. Aequorea sp.) and development stage composition (Fig. 7, e.g. Salpa aspera)
- Energy contents vary between < 0.1 and 22.8 kJ g DW⁻¹ depended on class and method used (Fig. 8)
- Energy contents resulting from bomb-calorimetry are always low compared with conversion-used values
- Organic content / energy content pattern (based on Platt et al. 1969) highly similar to other GZ, but lower than values published for crustaceans (Fig. 9)

Discussion

- ‘Hidden diversity’ in GZ in terms of organic and energy contents and elemental composition, which needs to be considered when used in food web models
- Size- and development stage dependency are considerable
- Bomb-calorimetry failed to confirm energy contents based on conversion factors; questioning either technique or validity of used conversions
- Species-level diversity is even bigger, but not shown here for clarity reasons
- Even if GZ have low energy content compared to crustaceans, GZ and taxonomic variety should not be neglected in nutritional studies

Future Research

- Continuation of sample analyses from cruises in 2020 is planned
- Seasonality, various tissues, parasites, and further life cycle stages are not considered yet
- Analysis of phosphorus, vitamin, and micronutrient contents is recommended
- Other gelatinous species of e.g. siphonophores, polychaetes, and radiolarians need to be analysed