Apr 27th, 4:00 PM - 4:30 PM

Long-term water quality monitoring trends and drivers of change in marine and fresh waters of the Swinomish Reservation, WA

Shannon Stewart
Swinomish Indian Tribal Community

Nicole Casper
Swinomish Indian Tribal Community

Follow this and additional works at: https://cedar.wwu.edu/ssec

https://cedar.wwu.edu/ssec/2022ssec/allsessions/38

This Event is brought to you for free and open access by the Conferences and Events at Western CEDAR. It has been accepted for inclusion in Salish Sea Ecosystem Conference by an authorized administrator of Western CEDAR. For more information, please contact westerncedar@wwu.edu.
Long-term water quality monitoring trends and drivers of change in marine and fresh waters of the Swinomish Reservation, WA

Shannon B. Stewart, Nicole J. Casper
Department of Environmental Protection, Swinomish Indian Tribal Community

Background

- Analyses focused on surface water quality (SWQ) data collected on the Swinomish Indian Tribal Community Reservation (Fig. 1).
- Swinomish Reservation is surrounded on all sides by marine waterbodies that are fed by small creeks and the North fork of the Skagit River on the southeast side. Fish and fish habitat are crucial to the cultural, spiritual, subsistence, and commercial activities of the Swinomish Tribe.
- SWQ monitoring started in 1997 at several sites and additional sites have been added over time. Currently monitored sites include (Fig. 2):
 - Five freshwater creeks draining into the Swinomish Channel, Kiket Bay, and Skagit Bay.
 - North Fork of the Skagit River as it drains into Skagit Bay.
 - Marine water sites in the Swinomish Channel, Padilla Bay, Turner’s Bay, Simlk Bay, Kiket Bay, and Skagit Bay.
 - Network of sites in the sloughs of the agricultural lands in the northeast portion of the Reservation.

Results Summary

- Increasing DO at all creek sites (Fig. 4) and decreasing in Kiket Bay (Fig. 6). DO commonly influenced by temp, bacteria, wind direction, and season in these waterbodies. Increases in bacteria correlated with decreasing DO at many sites (Table 1).
- Bacteria and turb increases at intermittent Lone Tree Creek (Fig. 4), Kiket, Simlk, and Turner’s Bays (Fig. 6). Between the three perennial creeks, Munks had the lowest nutrients and turb (Fig. 4). Turb commonly influenced by pH, discharge, nutrients, and wind direction in freshwater, and in all waterbodies (Table 2).
- Bacteria commonly influenced by temp on the West side of the Reservation, nutrients in the creeks, and turb, precip, wind direction, and season in all waterbodies (Table 3).
- Swinomish Channel salinity was higher in the north than in the south and turbidity was higher in the south than in the north (Fig. 5). Simlk and Turner’s Bays had increasing temp (Fig. 6).

Trend & Site Comparison Results

- Increasing DO at all creek sites (Fig. 4) and decreasing in Kiket Bay (Fig. 6). DO commonly influenced by temp, bacteria, wind direction, and season in these waterbodies.
- Bacteria and turb increases at intermittent Lone Tree Creek (Fig. 4), Kiket, Simlk, and Turner’s Bays (Fig. 6). Between the three perennial creeks, Munks had the lowest nutrients and turb (Fig. 4). Turb commonly influenced by pH, discharge, nutrients, and wind direction in freshwater, and in all waterbodies (Table 2).
- Bacteria commonly influenced by temp on the West side of the Reservation, nutrients in the creeks, and turb, precip, wind direction, and season in all waterbodies (Table 3).
- Swinomish Channel salinity was higher in the north than in the south and turbidity was higher in the south than in the north (Fig. 5). Simlk and Turner’s Bays had increasing temp (Fig. 6).

Discussion

- Wind:
 - High SSE and WSW winds were often correlated with WQ changes.
 - SSE winds may indicate Skagit River influence and occur more frequently in winter/fall.
 - WSW winds may indicate greater marine climate influence and occur more frequently in the spring/summer.
- Creeks, LONPE, and Kiket Bay: DO influenced by wind direction at all sites except Lone Tree Creek (Table 2). DO also increased with increasing wind speed at many sites, suggesting mixing. SSE winds had higher turb values in freshwater, whereas WSW winds had higher turb values in marine waters, which could indicate unique seasonal influences on turb (runoff in fresh, algal in marine).
- Bacteria influenced by wind direction at many sites (Table 3). SSE and WSW winds had high bacteria values, indicating both precip and temperature influences on bacteria levels.
- Precip/Discharge:
 - Common influence of precip and discharge on turb and bacteria levels at many sites, indicating heavy influence of runoff on fresh and marine waterbodies.
 - Freshwater creeks and LONPE turb increased with increasing discharge (Table 2).
- Bacteria was influenced by precip in most waterbodies (Table 3). Temp also influenced bacteria levels, especially at Lone Tree and Kiket Bay sites.
- Turb was positively correlated with precip in the Swinomish Channel (Table 2). Channel turb increased over the years at most sites, but significant increasing trends were more common in the south (Fig. 5). Differences between north and south may be related to Skagit River influence or elevated turb inputs from commercial activity runoff in the south.
- Nutrients:
 - Only collected in creeks, and difficult to include in all models due to high collinearity, but indications of influence on turb and bacteria in freshwater (Tables 2 and 3).
 - Positive relationship between nutrients and turb may indicate algal sources of turb. Positive relationship between nutrients and bacteria indicate potential wastewater influence.
- Lone Tree Creek turb and fecal responses were often the opposite of the other creeks, which could indicate unique wastewater, stormwater, or fertilizer influences in this creek.

Nonparametric Statistics

- All analyses were run on pH, dissolved oxygen (DO), temperature (temp), salinity, turbidity (turb), and fecal coliform (fecal) bacteria data.
- Seasonal Mann-Kendall for long-term trend analysis and Kruskal-Wallis test with post-hoc Conover-Iman test for comparisons between sites (data through 2016).
- Correlation analyses were used to test multicollinearity and determine highly correlated variables to exclude from regression models (data through 2016).
- Regression analyses (data through 2018):
 - Generalized additive models (GAM) for single response variables and up to 20 explanatory variables to help identify contributors to changes over time, including variables to highlight possible weather and climate influences on SWQ response variables.

Table 1: Dissolved oxygen (DO) response variable with significant explanatory variables that influence DO levels. Focus area in Kiket Bay, Lone Tree Lagoon (LT Lagoon), Lone Tree Pocket Estuary (LONPE) and the freshwater creeks.

Table 2: Turbidity response variable with significant explanatory variables that influence turbidity levels in all areas of focus.

Table 3: Fecal coliform (bacteria) response variable with significant explanatory variables that influence fecal levels in all areas of focus. (M2) indicates two models were run for this station and the results from the second model are reported.

Contact: Shannon B. Stewart
Water Resources Analyst, Department of Environmental Protection
Swinomish Indian Tribal Community
Email: sbuckham@swinomish.nsn.us
Website: http://www.swinomish.nsn.gov/resources/environmental-protection.aspx
Phone: (360) 853-5102

Acknowledgements

1. Todd Wilbert – Director, Department of Environmental Protection
2. Karen F. Webber – hydrologist, Department of Environmental Protection
3. Water Quality Technicians and Stewards over the years – Joyce Thompson, Brenda Askarid, Marla Moly, Rechelle Bock, Sue Gouette, Janice Ferrar, Linda Macdonald, Nancy Boyden, Linda Smith, and others
4. DWA Flood Management and Land Management Departments – Bob Kalan, Tony Kelley, Tad Kalan, Tony Kelley, Dan Mitchell, and others

Next Steps:

- Results from these analyses and others are being used to update a Unified Watershed Assessment for the Swinomish Reservation to help guide long-term monitoring strategies, management, and future restoration projects.
- Ongoing analyses to inform the influence of weather and climate on WQ.