Vessel Drift and Rescue Tug Response Analysis for the Strait of Juan de Fuca to the Southern Strait of Georgia

Marta Green
San Juan County

Follow this and additional works at: https://cedar.wwu.edu/ssec

Green, Marta, "Vessel Drift and Rescue Tug Response Analysis for the Strait of Juan de Fuca to the Southern Strait of Georgia" (2022). Salish Sea Ecosystem Conference. 83.
https://cedar.wwu.edu/ssec/2022ssec/allsessions/83

This Event is brought to you for free and open access by the Conferences and Events at Western CEDAR. It has been accepted for inclusion in Salish Sea Ecosystem Conference by an authorized administrator of Western CEDAR. For more information, please contact westerncedar@wwu.edu.
Vessel Drift and Response Analysis for the Strait of Juan de Fuca to the Southern Strait of Georgia

Emergency Towing Vessel for Inland Waters Demonstrated Effective in Preventing an Oil Spill

The project modeled the time available to rescue a disabled vessel adrift in the central Salish Sea before it grounds, and the time it would take for an emergency towing vessel (ETV) to rescue ships adrift in Haro Strait and Boundary Pass, thus reducing the risk of an oil spill. Nuka Research & Planning previously conducted a vessel drift and response analysis for Canada’s west coast and this study extends that modeling to inland waters.

ETV RESPONSE EFFECTIVENESS

<table>
<thead>
<tr>
<th>Area That Vessel Drifts From Typical Shipping Route</th>
<th>Percent of Vessels Potentially Rescued From Grounding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neah Bay</td>
<td>30% 75%-80%</td>
</tr>
<tr>
<td>Turn Point</td>
<td>15% 85%</td>
</tr>
<tr>
<td>N Haro Strait</td>
<td>40% 90%-95%</td>
</tr>
<tr>
<td>S Haro Strait</td>
<td>65% 90%-95%</td>
</tr>
</tbody>
</table>

An ETV stationed in Sidney or Roche Harbor providing the mid-range response time would be effective in preventing 75-95% of disabled vessel groundings in cases modeled for these waterways, significantly improving the current rescue capability from Neah Bay.

The ETV response analysis focused on the shipping route through Haro Strait, Turn Point, and Boundary Pass. Rescue times were calculated for a hypothetical ETV positioned at six locations plus the tug in Neah Bay. Based on a range of travel speeds and distances, rescue times were bracketed as fast, mid-range, and slow.

DRIFT MODELING

Current and wind models estimate how long it would take a drifting loaded, mid-size containership to ground based on the winds and currents measured from 2014-2017.

More than 6,500 model runs yielded 15.6 billion estimates of drift times.