Phase 2 Development of a Hydrologic Condition Index for the Puget Sound Basin

Colin Hume

Follow this and additional works at: https://cedar.wwu.edu/ssec

https://cedar.wwu.edu/ssec/2022ssec/allsessions/114

This Event is brought to you for free and open access by the Conferences and Events at Western CEDAR. It has been accepted for inclusion in Salish Sea Ecosystem Conference by an authorized administrator of Western CEDAR. For more information, please contact westerncedar@wwu.edu.
Phase 2 Development of a Hydrologic Condition Index for the Puget Sound Basin

Salish Sea Ecosystem Conference

April 27th, 2022

Colin Hume
Puget Sound Recovery Lead
Shorelands and Environmental Assistance Program
Topics we’ll cover today

• Phase 1 Hydrologic Condition Index (HCI) outcomes (Volume 4)
• Phase 2 HCI approach
• How HCI fits into existing and emerging decision-support frameworks

Project supported by:

Environmental Science Associates

Clear Creek Solutions
Hydrologic Condition Index (HCI)

Background

• Conceptualized initially by Lucchetti et al. 2014 to assess CAO effectiveness
 • Building on concept that High-pulse-counts ("flashiness") correlate with stream biology

• Stanley et al. 2019 (Volume 4 of the PSWC):
 • Evaluated different methods for calculating HCI
 • Validated HCI with stream gage data
 • Initial proof of concept for “alternative futures” applications
 • Initial concepts on how to integrate HCI with existing PSWC indices and other stream data
 • Recommendations for phase 2 development
Hydrologic Condition Index (HCI)

Calculate the Index:
- Overlay grid on a watershed
- Each grid cell – shortest distance to stream (d_{Og}), distance from stream intersection to outlet (d_{Sg})
- Land cover and surficial geology combination for each grid cell has a $HPC_{coefficient}$ derived from HSPF hydrologic modeling
- Assess current condition relative to worst possible (all paved)

\rightarrow 0-1 index where **higher values are correlated with relatively more High-Pulse Counts** at the outlet

Calculation of Hydrologic Condition Index for a Watershed

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Calculate the High Pulse Count value for each grid cell (HPC_g).</td>
<td>$HPC_g = HPC_{coeff} \left(\frac{1}{d_{Og} + d_{Sg}} \right)$</td>
</tr>
<tr>
<td>2</td>
<td>Calculate the Hydrologic Condition Value (HCV_s) for the watershed.</td>
<td>$HCV_s = \sum_{g=1}^{n} HPC_g$</td>
</tr>
<tr>
<td>3</td>
<td>Calculate the Hydrologic Condition Index (HCI) for the watershed. Divide the hydrologic condition value by the worst case HCV when the watershed is 100% paved.</td>
<td>$HCI = \left(\frac{HCV_s}{HCVs\ worst} \right)$</td>
</tr>
</tbody>
</table>
HCI & High Pulse Counts

Index validation and methods comparison-
- HCI correlates well with **gage measured High-Pulse-Counts** or “stream flashiness” in 8 test basins
- Better than % impervious
Hydrologic Condition Index Phase 2

Major tasks:

• **Calibrate HPC** coefficients for areas outside of Central Puget Sound → Ultimately allow for Puget Sound-wide application

• **Refine HCI Condition Categories** → validating with stream gage data and response variables such as B-IBI
 • Describe “uncertainty”

• **Local Application Use Case Pilots**
HCI Phase 2 - Calibrate HPC coefficients

Watershed selection criteria:
1. Existing calibrated HSPF model available
2. Geographic spread North-Sound Puget Sound
3. Level of development (low – moderate)

Ultimately generate a library of HPC coefficients to draw from for local applications depending on scenario

Table – Phase 1 High-Pulse-Count coefficients for Till surficial geology derived from five King County Watersheds (Lucchetti et al. 2014) with HSPF models which ran 61-years of climate data to generate average yearly HPCs for given combinations of land cover on surficial geology. Outwash values not displayed.

<table>
<thead>
<tr>
<th>Land Cover on Till</th>
<th>Hamm Creek (set 1)</th>
<th>Miller Creek (set 2)</th>
<th>Des Moines Creek (set 3)</th>
<th>Newaukum Creek (set 4)</th>
<th>Duwamish Creek (set 5)</th>
<th>HPC AVG</th>
</tr>
</thead>
<tbody>
<tr>
<td>forest</td>
<td>2.393443</td>
<td>2.672131</td>
<td>3.655738</td>
<td>4.606557</td>
<td>7.04918</td>
<td>4.07541</td>
</tr>
<tr>
<td>shrub</td>
<td>2.639344</td>
<td>3.311475</td>
<td>4.47541</td>
<td>6.016393</td>
<td>7.081967</td>
<td>4.704918</td>
</tr>
<tr>
<td>pasture</td>
<td>2.803279</td>
<td>4.032787</td>
<td>4.622951</td>
<td>6.590164</td>
<td>7.606557</td>
<td>5.131148</td>
</tr>
<tr>
<td>wetland</td>
<td>2.901639</td>
<td>4.868852</td>
<td>4.540984</td>
<td>7.52459</td>
<td>8.245902</td>
<td>5.616393</td>
</tr>
<tr>
<td>clear cut</td>
<td>3.819672</td>
<td>5.032787</td>
<td>5.360656</td>
<td>8.606557</td>
<td>8.803279</td>
<td>6.32459</td>
</tr>
<tr>
<td>grass</td>
<td>5.672131</td>
<td>5.213115</td>
<td>6.032787</td>
<td>9.983607</td>
<td>8.47541</td>
<td>7.07541</td>
</tr>
<tr>
<td>bare</td>
<td>5.114754</td>
<td>8.52459</td>
<td>7.901639</td>
<td>10.508197</td>
<td>11.459016</td>
<td>8.701639</td>
</tr>
<tr>
<td>building</td>
<td>30.508197</td>
<td>34.803279</td>
<td>33.491803</td>
<td>29.622951</td>
<td>31.836066</td>
<td>32.052459</td>
</tr>
<tr>
<td>pavement</td>
<td>26.540984</td>
<td>36.885246</td>
<td>36.508197</td>
<td>34.032787</td>
<td>35.737705</td>
<td>33.940984</td>
</tr>
<tr>
<td>open water</td>
<td>27.934426</td>
<td>38.163934</td>
<td>38.131148</td>
<td>36.655738</td>
<td>37.786885</td>
<td>35.734426</td>
</tr>
<tr>
<td>unpaved road</td>
<td>33.983607</td>
<td>37.180328</td>
<td>36.901639</td>
<td>34.754098</td>
<td>36.672131</td>
<td>35.898361</td>
</tr>
<tr>
<td>paved road</td>
<td>34.360656</td>
<td>37.655738</td>
<td>37.344262</td>
<td>35.180328</td>
<td>37.213115</td>
<td>36.35082</td>
</tr>
</tbody>
</table>
HCI Phase 2 – **Refine HCI Condition Categories**

Phase 1 Extrapolates the relationship between HPC and B-IBI to the HCI to establish thresholds of likely stream condition → **Phase 2 expand sample of watersheds to higher HCI range.**

Plot of measured high pulse counts and Benthic Index of Biotic Integrity (B-IBI) survey points. A high pulse count of approximately 14 to 15 provides an approximate, useful discrimination between good (60-80), fair (40-60), and poor (<40) B-IBI scores. B-IBI data from DeGasperi & Gregersen (2015).
HCI Phase 2 – Local Application Use Cases

• HCI provides a metric (“ruler”) by which to evaluate current condition relative to potential “worst” – status and trends application

• HCI may be useful in evaluating hydrologic implications of future land cover changes and decisions related to:
 • Land use designations and zoning under GMA
 • CAO evaluations
 • Buildable Lands Programs
 • Stormwater planning (e.g. Stormwater Management Action Plans)
 • Condition Assessment
 • Retrofit or stormwater mitigation planning

A planning-Level tool for rapid assessment and scenario evaluation
Local Applications – Buildout Scenarios
Coarse-Scale

<table>
<thead>
<tr>
<th>Future Buildout Scenario</th>
<th>Potential Development Units</th>
<th>Hydrologic Condition Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traditional Scenario</td>
<td>1058 Units</td>
<td>HCl = 0.6 Poor Condition</td>
</tr>
<tr>
<td>Increased Riparian Buffer Scenario</td>
<td>923 Units</td>
<td>HCl = 0.44 Poor Condition</td>
</tr>
<tr>
<td>Green Development Scenario</td>
<td>2122 Units</td>
<td>HCl = 0.23 Moderate to Good Condition</td>
</tr>
</tbody>
</table>

Current Condition

Story Map
Local Applications – Buildout Scenarios
Finer-Scale

- Will generally require higher resolution land cover and flow-path layers
- Account for Critical Areas to some degree
- Account for LID and/or stormwater mitigation requirements
- Generalized templates for typical development or redevelopment in zoning categories

Image from Lucchetti et al. 2014
Pilot Opportunity!

• Looking for **3 pilot use cases** with local governments:
 • Stormwater Planning
 • Land Use Planning (GMA/SMA)
 • Restoration Planning
 • Status and Trends metric
 • Other?

• Consultant team and Ecology will produce a report which illustrates how the HCI can be integrated into an **existing planning framework**.

Contact me at 425-395-5283 OR colin.hume@ecy.wa.gov
Integrating the HCI into the PSWC Framework

- Existing Broad-scale indices (Volumes 1 and 2) compare areas for their contribution and/or level of degradation for:
 - Water Flow Processes
 - Water Quality Processes
 - Terrestrial Habitats
 - Freshwater Habitats
 - Marine Shoreline Habitats
Type of Data & Information:

Application:

What to Use:

Scale:

Broad-Scale – 100’s of sq. miles

Mid-scale – 10’s of sq. miles

Fine-Scale – less than 1 sq. mile

= Integrated result

Land use and stormwater planning - Type, & location of new development, prioritization of restoration and protection actions.

Assessments of watershed processes such as those found in Puget Sound Characterization.

Coarse scale data on land cover/land use, geology, precipitation, topography, & hydrology.

The most important areas contributing to processes such as movement of water, sediment, nutrients & general level of watershed integrity.

Project Design of Restoration and Mitigation

Predictive hydrologic models, water quality, species & habitat monitoring data etc.

Site specific data on biological, physical and chemical conditions

Quantifies: hydrologic flows, limiting water quality factors, habitat structure & functions

Integrating the HCI into the PSWC Framework
Integrating the HCI into PSWC Framework

- HCI can be used as a “mid-scale” part of the integration framework
- Complement the Broad-scale indices
- Narrower indicator of stream function than existing indices
- Allow for alternative future scenarios evaluation to communicate implications of future land cover change

<table>
<thead>
<tr>
<th>Steps</th>
<th>Use Tool</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. What is the predominate Watershed Management Category for your watershed?</td>
<td>Broad scale results and local information.</td>
<td>Protection? Restoration? Development?</td>
</tr>
<tr>
<td>2. Determine risk from future buildout. Good, moderate, or poor hydrologic condition?</td>
<td>HCI score for existing and full buildout.</td>
<td>Intact Hydrologic Condition → Moderate Hydrologic Condition → Poor Hydrologic Condition → Degraded Hydrologic Condition</td>
</tr>
</tbody>
</table>
| 3. Integrate results from step 1 and 2. | Solution templates. | • For “Protection” areas and HCI < 0.21, use protection actions
• For “Restoration” areas and HCI > 0.21 & < 0.44, use restoration actions.
• For “Development” areas and HCI > 0.44, use LID. |
| 4. Which areas will help maintain a healthy hydrologic condition? | HCI scores, land cover, geology, and proposed actions. | Identify areas that could improve Hydrologic condition through restoration actions or green development actions. |
| 5. Design future development alternatives and rerun HCI. | HCI score for proposed development. | |
Acknowledgments

Funding support provided by the Environmental Protection Agency’s
National Estuary Program
Stormwater Strategic Initiative

Puget Sound Watershed Characterization
Website

Contact:
Colin Hume
425-395-5283
colin.hume@ecy.wa.gov

This project has been funded wholly or in part by the United States Environmental Protection Agency under Puget Sound Ecosystem Restoration and Protection Cooperative Agreement grant PC-00120101 with Washington Department of Ecology. The contents of this document do not necessarily reflect the views and policies of the Environmental Protection Agency, nor does mention of trade names or commercial products constitute endorsement or recommendation for use.

