

Western Washington University
Western CEDAR

Salish Sea Ecosystem Conference

2022 Salish Sea Ecosystem Conference (Online)

Apr 26th, 1:30 PM - 3:00 PM

Surveillance for Antibiotic-Resistant E. coli in the Salish Sea Ecosystem

Alexandria Vingino

Follow this and additional works at: https://cedar.wwu.edu/ssec

Part of the Fresh Water Studies Commons, Marine Biology Commons, Natural Resources and Conservation Commons, and the Terrestrial and Aquatic Ecology Commons

Vingino, Alexandria, "Surveillance for Antibiotic-Resistant E. coli in the Salish Sea Ecosystem" (2022). *Salish Sea Ecosystem Conference*. 178. https://cedar.wwu.edu/ssec/2022ssec/allsessions/178

This Event is brought to you for free and open access by the Conferences and Events at Western CEDAR. It has been accepted for inclusion in Salish Sea Ecosystem Conference by an authorized administrator of Western CEDAR. For more information, please contact westerncedar@wwu.edu.

Surveillance for antibiotic resistant *E. coli* in the Salish Sea ecosystem

Presenter: Alexandria Vingino, MPH 2022 Salish Sea Ecosystem Conference

Background

- Antibiotics and their residues → Aquatic environments → Antibiotic Resistant Bacteria (ARB)
- Surveillance can inform us of ARB contamination on aquatic ecosystems, and humans and animals that live within it

Project Aims

- Aim 1: **Sample** marine water, freshwater, marine mammals, and fish for *E. coli*
- Aim 2: Determine % resistance in the *E. coli* isolated from all samples.
- Aim 3: Analyze the relationships between antibiotic resistant *E. coli* using **Whole Genome Sequencing (WGS) and Multilocus Sequence Typing** (MLST).

E. coli Samples

Map of samples E. coli isolates by source

Results & Discussion

E. coli Isolates and Antibiotic Resistance

Sample Source (n=305)	Isolates Characterized	Intermediate	Resistant	Susceptible
Marine Water	212	7 (3.3%)	7 (3.3%)	198 (93.4%)
North Puget Sound	49	3 (6.1%)	4 (8.2%)	42 (85.7%)
Central Puget Sound	55	0 (0%)	2 (3.6%)	53 (96.4%)
South Puget Sound	56	3 (5.4%)	0 (0%)	53 (94.6)
Strait of Juan de Fuca	52	1 (1.9%)	1 (1.9%)	50 (96.2%)
Freshwater	5	1 (20%)	3(60.0%)	1 (20.0%)
Marine water by beaches	3	0 (0%)	0 (0%)	3 (100%)
Harbor Seal	52	6 (11.5%)	8 (15.4%)	38 (73.1%)
Dead Seal	35	6 (17.1%)	3 (8.6%)	26 (74.3%)
Live Seal	17	0 (0%)	5 (29.4%)	12 (70.6%)
Harbor Porpoise	7	2 (28.6%)	0 (0%)	5 (71.4%)
River Otter	24	4 (16.7%)	13 (54.2%)	7 (29.2%)
Sole	2	0 (0%)	0 (0%)	2 (100%)
Total	305	20 (6.6%)	31 (10.2%)	254 (83.3%)

Non-susceptibility Summary

Statistical Analysis – Six Fisher's Exact Tests

	Non-Susceptible vs Susceptible	Resistant vs Susceptible
Puget Sound Quadrants	P-value = 0.148	P-value = 0.089
Marine Mammals and River Otters vs Marine Water	P-value < 0.0001 OR 5.334 (99.2% CI 2.21-13.40)	P-value < 0.0001 OR: 8.877 (95% CI: 3.52– 24.67)
Marine Mammals vs Marine Water	P-value = 0.005 OR 3.014 (99.2% CI: 1.04-8.58)	P-value = 0.01

MLST Diversity

Occurrences					
# of					
Occurrences	Count	%			
1	139	70.92%			
2	28	14.29%			
3	10	5.10%			
4	5	2.55%			
5	7	3.57%			
6	3	1.53%			
7	2	1.02%			
8	1.0	0.51%			
12	1	0.51%			
Total Count	196	100%			

Map of Extra-intestinal pathogenic *E. coli* (ExPEC) associated ST

Takeaways

Takeaways

Animal have the potential to be sentinels for antibiotic resistant bacteria Diversity of ST in samples, with ExPEC and ExPECassociated ST

Disconnect between phenotypic and genotypic susceptibility testing Compare animal and environmental isolates to human isolates for further research

Thanks!

 SeaDoc Society for partial support Washington Department of Health – ARLN and WGS Dr. Stephanie Norman and Phoenix (Zoetis) Labs Washington Department of Fish and Wildlife Dr. Michelle Wainstein Dr. Marilyn C. Roberts, UW DEOHS Dr. Peter Rabinowitz, UW COHR Dr. Scott Weissman, SCH David No, UW DEOHS Lauren Frisbie, UW COHR

Questions?