

Western Washington University
Western CEDAR

Salish Sea Ecosystem Conference

2022 Salish Sea Ecosystem Conference (Online)

Apr 28th, 10:15 AM - 11:45 AM

Getting from one size fits all to variable width riparian buffer recommendations

Kollin Higgins

Follow this and additional works at: https://cedar.wwu.edu/ssec

Part of the Fresh Water Studies Commons, Marine Biology Commons, Natural Resources and Conservation Commons, and the Terrestrial and Aquatic Ecology Commons

Higgins, Kollin, "Getting from one size fits all to variable width riparian buffer recommendations" (2022). *Salish Sea Ecosystem Conference*. 198. https://cedar.wwu.edu/ssec/2022ssec/allsessions/198

This Event is brought to you for free and open access by the Conferences and Events at Western CEDAR. It has been accepted for inclusion in Salish Sea Ecosystem Conference by an authorized administrator of Western CEDAR. For more information, please contact westerncedar@wwu.edu.

Getting from one size fits all to variable width riparian buffers

Salish Sea Conference April 28th 2022 Kollin Higgins King County Department of Natural Resources and Parks

WRIA 7 - Snohomish

Snohomish

2

Seattle

Skykomish

Snoqualmie

Historical Chinook Abundance S S S. **S N S** No. **S N** S **N** No. **N** No. **N**

Today

Riparian area mostly treeless

Salmon Plan policy recommendation: 150ft buffers on all salmonid bearing streams

Strong overlap between agriculture and Chinook recovery

2012 County Council Policy

"...a collaborative watershed planning process with the goal of maintaining and improving agricultural viability, improving ecological function and habitat quality, and restoring floodplains"

What we called Fish Farm Flood or FFF

150 foot riparian buffers would...

- Take ~ 2,600 acres out of agricultural production
- Or about 1/3 of the land currently in agricultural production

Recommendation: Buffer Task Force in phase 2 of FFF

"To provide the foundation and guidance for a scientifically credible, context-sensitive, locally derived riparian buffer strategy"

Buffer Task Force representation

- Tribal representation
- Farmers
- Riparian restoration practitioners
- Property rights groups
- Salmon recovery staff

Technical Elements for the Buffer Task Force

Synthesis of Science

- Synthesis of best available riparian buffer science
- Focused on **low gradient** floodplain conditions
- Summarized by function
 - 1. WQ Nutrients, Sediment, Pesticides
 - 2. WQ Temperature
 - 3. Microclimate
 - 4. Large wood
 - 5. Erosion
 - 6. Prey/litter inputs

Synthesis of Riparian Buffer Best Available Science: Informing Variable-Width Buffers in the Lower Snoqualmie Valley

November 2018

Department of Natural Resources and Parks Water and Land Resources Division **Rural Regional Services Section** King Street Center, KSC-NR-0600 201 South Jackson Street, Suite 600 Seattle, WA 98104 206-477-4800 TTY Relay: 711

Example—Function: Large Wood

Large watercourses	 Primary wood input = erosion Areas of channel migration require wide buffers to provide continual wood sources Coniferous trees provide long-term habitat benefits and deciduous provides short-term benefits
Armored watercourses	 Armoring shifts wood input drivers from erosion to wind throw and mortality
Smaller watercourses	 Size of habitat-forming wood is smaller in smaller watercourses Smaller channels receive a greater proportion of woody debris inputs from shorter source distances (closer to watercourses)
High-gradient watercourses	 Primary wood inputs = debris flows, landslides, and wind throw High-gradient tributaries contribute to instream wood which is transported to downstream reaches

				Rip	arian Buffer Width			
Attribute _		25ft	50ft	75ft	100ft	150ft 20	Oft >250ft	Reference
Water Quality -	-			50%	@~27m/90ft 70% @~	35m/115ft	95% @~69m/225ft	FEMAT 1993
Shade/Temperature	_ i		85% @ 15m/5	Oft				Broderson 1973
			60% @ 10m/33ft 72% @ 17m/5	Sft 80% @ 24m/8	Dft			Brazier and Brown 1973
	ę		65% @ 18	3-20m/60-66ft	74% @ 30m/98ft			DeWalle 2010
i	- Si	70% @ 6-7m/20	D-23ft					DeWalle 2010
	×			60% @ 21m/70ft		85% @ 46m/151ft		Steinblums et al. 1984
		79% @ 5m/15ft 8	84% @ 11m/35ft					Shaw 2018
i		87% @ 5ft 88% @ 5m/15ft						Benedict and Shaw 2012
Ľ					30m/98ft	52m/170ft		Groom et al. 2011
			10m/33ft		30m/98ft			Gomi et al. 2006
i			15m/49ft		30m/98ft			Jones et al. 2006
ł	Ē		11m/36ft	23m/75ft				Wilkerson et al. 2006
!			20m	n/66ft	30m/98ft			Sweeny and Newbold 2014

Reference	Riparian	Stream order,	Gradient	Landscape	Comments	Cited in	Citation Title
	Cover Type	Width, or	or Slope				
		Catchment Size					
FEMAT 1993						Reeves et al. 2018	Forest ecosystem management: an ecological, economic, and social assessment
Broderson		Small streams		Western Oregon	Created an equation from the literature that estimated		Sizing Buffer Strips to Maintain Water
1973		with flows <5 cfs		and Washington	shade based on riparian width. Found 85% of shade for		Quality
				-	"small streams" produced from a width of 50 ft.		-
Brazier and		"small streams"		Umpqua National	80% needed for water temp control and equivalent to full	Beschta et al. 1987,	Buffer Strips for Stream Temperature
Brown 1973				Forest; Southern	forest conditions; maximum shade at 80 ft and 90% of max	Sweeny and	Control
				Cascade Mountains;	at 55 🔂	Newbold 2014,	
				Forestry		Osborne and	
						Kovacic 1993,	
DeWalle	Forest	fixed stream			Modeled stream shade at different buffer widths, also kept		Modeling Stream Shade: Riparian Buffer
2010		width = 3 m (N-S			in mind stream orientation. This line is specific to N-S		Height and Density as Important as Buffer
		orientation)			oriented streams, shade was maximized at widths ${\sim}30~{ m m}$		Width
DeWalle	Forest	fixed stream			Modeled stream shade at different buffer widths, also kept		Modeling Stream Shade: Riparian Buffer
2010		width = 3 m (E-			in mind stream orientation. This line is specific to E-W		Height and Density as Important as Buffer
		W orientation)			oriented streams, shade was maximized at widths ${\sim}7~{ m m}$		Width

Riparian data manually delineated based on recent aerials

Stream Classification

Example classification

Example classification

Streams types?

- 1. River
- 2. Large watercourses (basins larger than 8 square miles)
- 3. Medium watercourses (Strahler's stream order 3 and 4)
- 4. Small watercourses (Strahler's stream order 1 and 2)
- 5. Artificial watercourses
- 6. Oxbow/Ponds

Additional characteristics?

- Is the channel straightened/modified or sinuous
- Originates outside/inside the floodplain
- Bank armoring
- Solar aspect
- Gravel/spawning reach

Example of solar aspect

River Logic Model

									Revised Te	ech Team
	Exi	sting	Tech 7	Feam	Fish	Caucus	Farm	Caucus	recomme	endation
	width		\\/idth	Ag	\\/idth		\\/idth		\\/idth	
Mainstem - Alluvial	150	Ag acres	200	101	200	101	200	101	200	101
Mainstem-Nonalluvial-no armor	150	126	150	126	150	126	150	126	150	126
Mainstem -Nonalluvial-armored high shade	150	76	100	3/	100	3/	100	3/	100	3/
Mainstem-Nonalluvial-armored low shade	150	51	50	<u></u> Л	50	<u> </u>	50	<u></u> Л	50	<u></u> Л
Large Stream unarmored	150	77	180	97	225	126	180	97	200	
Large Stream armored	150	21	125	17	180	25	125	17	180	25
Medium-sinuous-originate Ol ITside floodolain	150	72	140	65	140	64	80	27	110	<u>45**</u>
Medium-sinuous-originate INside floodplain	150	6	80	2	80	2	80	2	80	
Medium NONsinuous -originate outside floodolain	150	422	80	201	80	201	80	201	80	201
Medium NONsinuous-originate-inside floodolain-	100		00	201	00	201	00	201	75	201
HIGH Shade	150	6	75	3	75	3	75	3	10	3
Medium NONsinuous-originate-inside floodolain-	100		10	0	10	0	10		50	0
I OW shade	150	1	50	0	50	0	50	0	00	0
Small-sinuous-originate OUTside floodplain	150	95	100	57	100	57	50	22	80	41**
Small-sinuous-originate INside floodplain	150	92	65	31	50	22	50	22	50	22
Small NONsinuous-originate outside floodplain	150	421	65	168	50	121	35	76	40	96**
Small NONsinuous-originate-inside floodplain-	100				00		00		35	
HIGH Shade	150	288	50	87	35	57	35	57	00	57
Small NONsinuous -originate-inside floodplain-	100								35	
LOW shade	150	132	30	22	35	27	25	18		27
Oxbow-HIGH shade	150	134	75	53	75	54	75	56	75	56
Oxbow-LOW shade	150	71	50	13	50	13	50	13	50	13
Artificial-HIGH shade	150	286	50	102	35	66	15	23	15	23
Artificial-LOW shade	150	105	25	16	15	9	5	3	15	9
Unknowns*	150	59	35	15	35	15	35	15	35	15
Ag acres affected by widths		2,605		1,215		1,128		918		1,013
% reduction from existing		0%		53%		57%		65%		61%

	2005 Snohomish Basin Salmon Becovery Plan	Potential Acres Agriculture Converted	Buffer Task Force Agreement	Potential Acres Agriculture Converted
Mainstem River	Recovery Hall	converted	Agreement	converted
alluvial reach	150	65	200	101
non-alluvial and unarmored,	150	126	150	126
non-alluvial, armored, high shade potential	150	76	100	34
non-alluvial, armored, low shade potential	150	50 51		4
Large Watercourses				•
Unarmored	150	77	200	110
Armored	150	21	180	25
Medium Watercourses				•
Sinuous, originates outside floodplain	150	72	110	45
Sinous, originates inside the floodplain	150	6	80	2
Non-Sinuous, originates outside Floodplain	150	422	80	199
Non-Sinuous, originates in Floodplain, high shade	150	6	75	3
Non-Sinuous, originates in Floodplain, low shade	150	1	50	0
Small Watercourses				
Sinuous, originates outside floodplain	150	95	80	42
Sinous, originates inside the floodplain	150	92	50	22
Non-Sinuous, originates outside Floodplain	150	421	40	91
Non-Sinuous, originates in Floodplain, high shade	150	288	35	57
Non-Sinuous, originates in Floodplain, low shade	150	132	35	27
Oxbows				
High shade Potential	150	134	75	55
Low Shade Potential	150	71	50	13
Artificial Watercourses				
High shade Potential	150	286	15	23
Low Shade Potential	150	105	15	9
unknowns	150	59	35	15
TOTAL		2,605		1,003

Wrap up—Final Agreement

- Is between the County and the agricultural community, but the hope is that all potential parties abide by the agreement
- Voluntary buffers only—these should not be used for mitigation or regulations
- Still pending: a Buffer Implementation Task Force to make revegetation happen faster

Documents available online, google "fish farm flood riparian buffer"

This project has been funded wholly or in part by the United States Environmental Protection Agency under assistance agreement PC-01J22301 through the Washington Department of Fish and Wildlife. The contents of this website and the documents herein do not necessarily reflect the views and policies of the Environmental Protection Agency or the Washington Department of Fish and Wildlife, nor does mention of trade names or commercial products constitute endorsement or recommendation for use.

Questions?

Kollin Higgins <u>Kollin.Higgins@kingcounty.gov</u> 206-477-4711

Snoqualmie Buffer Task Force documents available online, google "**fish farm flood riparian buffer**"

