

Initial sensitivity analysis of nutrient loading to understand hypoxia in the Salish Sea subbasins

> Su Kyong Yun¹ Adi Nugraha¹ Stefano Mazzilli¹ Andy James¹ Joel E Baker¹ Tarang Khangaonkar^{1,2}

¹Salish Sea Modeling Center (SSMC) and Puget Sound Institute at UW ²Pacific Northwest National Laboratory (PNNL) 2022 Salish Sea Ecosystem Conference April 27th, 2022

The Salish Sea

- A large and complex estuarine system consisting of Puget Sound, the Strait of Juan de Fuca, and Georgia Strait
- Has high environmental, cultural and economic importance
- The value has been threatened by
 - High nutrients levels
 - Recurring hypoxia
 - Harmful algal blooms
 - Declining dissolved oxygen (DO) Trend

Map courtesy of Western Washington University

Salish Sea Model (SSM)

Grided with

- 16,012 nodes
- 25,019 triangular cell
- 10 sigma-stretched layers for depth

Khangaonkar T, A Nugraha, W Xu, W Long, L Bianucci, A Ahmed, T Mohamedali, and G Pelletier. 2018. Analysis of Hypoxia and Sensitivity to Nutrient Pollution in Salish Sea. *Journal of Geophysical Research* – *Oceans*, 123(7): 4735-4761

Method

1 Cell with 10 Layers

Depth Ratio		
1st lyr	3%	
2nd lyr	6%	
3rd lyr	7%	
4th lyr	9%	
5th lyr	10%	
6th lyr	11%	
7th lyr	13%	
8th lyr	13%	
9th lyr	13%	
10th lyr	15%	

- FVCOM2.7c (ecy)+FVCOM-ICM_v2
- 2019 Bounding Scenario Input ^[3]
- Hypoxic : DO level less than 2mg/L
- Hypoxic Volume Days : Accumulated hypoxic volume throughout 2014 at Puget Sounds Region

Method

NO₃NO₂

Method

Result (1) Numerical Analysis Hypoxic volume days of each scenarios

	Hypoxic Volume Days [km³days]	Compared to Reference	Compared to Exist
Reference	95.05	-	-
Exist	120.65	27%	-
River 1.5 times	132.99	40%	10%
River 0.5 times	110.18	16%	-9%
River 0.0 times	100.15	5%	-17%
WWTP 1.5 times	107.48	13%	-11%
WWTP 0.5 times	77.68	-18%	-36%
WWTP 0.0 times	66.38	-30%	-45%
River+WWTP 1.5 times	129.36	36%	7%
River+WWTP 0.5 times	113.34	19%	-6%
River+WWTP 0.0 times	106.58	12%	-12%

Result (2) Reference vs Exist

Spatial distribution of hypoxic volume days

General

 Compared to Reference, Exist has 27% increased hypoxia volume

Whidbey Basin & South Sound

 Exist scenario has more hypoxic volume and days compared to Reference

Hood Canal

 Exist scenario has more hypoxic volume and days compared to Reference

Result (3) Exist vs River Input Changes

Spatial distribution of hypoxic volume days

Result (3) **Exist vs WWTP Input Changes** Spatial distribution of hypoxic volume days

Result (3) Exist vs River+WWTP Input Changes Spatial distribution of hypoxic volume days

Result (4) Whidbey Basin

Spatial distribution of hypoxic volume days

Discussion (1) Hood Canal Hypoxic Node

Discussion (1) Whidbey Basin Hypoxic Node

Discussion (2) General hypoxic volume days trend

Conclusion

- Change in TIN affects the hypoxic volume days in Puget Sound
- Compared to the pre-anthropogenic scenario, the post-anthropogenic scenario has 27% increase in hypoxic volume days
- The impact happens mainly at Hood Canal and Whidbey basin during autumn (September-November) at the bottom layer.
- Change in TIN from different sources affects hypoxia volume days in different ways
- Need further analysis to figure out why Salish Sea sub-basins react differently according to the change in TIN from different sources.

Thank you

https://ssmc-uw.org/

Su Kyong Yun sukyong@uw.edu

Reference

[1] Ahmed, A., et al. "Puget Sound Nutrient Source Reduction Project, Volume 1: Model Updates and Bounding Scenarios." *Washingto Department of Ecology, Publication* (2019): 19-03.

[2] Roberts, Mindy, Julia Bos, and S. L. Albertson. *South Puget Sound Dissolved Oxygen Study: Interim Data Report*. Washington State Department of Ecology, 2008.

[3] Khangaonkar, Tarang, Wen Long, and Wenwei Xu. "Assessment of circulation and inter-basin transport in the Salish Sea including Johnstone Strait and Discovery Islands pathways." *Ocean Modelling* 109 (2017): 11-32. <u>doi: 10.1016/j.ocemod.2016.11.004</u>