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We provide a direct proof for the boundedness of pseudodifferential operators with symbols in the bilinear Hörmander class BS0
1,𝛿
,

0 ≤ 𝛿 < 1. The proof uses a reduction to bilinear elementary symbols and Littlewood-Paley theory.

1. Introduction: Main Results and Examples

Coifman andMeyer’s ideas onmultilinear operators and their
applications in partial differential equations (PDEs) have
had a great impact in the future developments and growth
witnessed in the topic of multilinear singular integrals. One
of their classical results [1, Proposition 2, p. 154] is about the
𝐿
𝑝
×𝐿
𝑞
→ 𝐿
𝑟 boundedness of a class of translation invariant

bilinear operators (bilinear multiplier operators) given by

𝑇
𝜎
(𝑓, 𝑔) (𝑥) = ∫

R𝑛
∫

R𝑛
𝜎 (𝜉, 𝜂) �̂� (𝜉) �̂� (𝜂) 𝑒

𝑖𝑥⋅(𝜉+𝜂)
𝑑𝜉 𝑑𝜂. (1)

We have the following.

Theorem A. If |𝜕𝛽
𝜉
𝜕
𝛾

𝜂
𝜎(𝜉, 𝜂)| ≲ (1 + |𝜉| + |𝜂|)

−|𝛽|−|𝛾| for all
𝜉, 𝜂 ∈ R𝑛 and all multi-indices 𝛽, 𝛾, then 𝑇

𝜎
has a bounded

extension from 𝐿𝑝 × 𝐿𝑞 into 𝐿𝑟, for all 1 < 𝑝, 𝑞 < ∞ such that
1/𝑝 + 1/𝑞 = 1/𝑟.

In fact, Coifman and Meyer’s approach yields Theorem
A only for 𝑟 > 1. The optimal extension of their result to
the range 𝑟 > 1/2 (as implied in the theorem above) can
be obtained using interpolation arguments and an end-point
estimate 𝐿1 × 𝐿1 into 𝐿1/2,∞ in the works of Grafakos and
Torres [2] and Kenig and Stein [3].

Bilinear pseudodifferential operators are natural non-
translation invariant generalizations of the translation invari-
ant ones; they allow symbols to depend on the space variable

𝑥 as well. Let us then consider bilinear operators a priori
defined from S × S into S of the form

𝑇
𝜎
(𝑓, 𝑔) (𝑥) = ∫

R𝑛
∫

R𝑛
𝜎 (𝑥, 𝜉, 𝜂) �̂� (𝜉) �̂� (𝜂) 𝑒

𝑖𝑥⋅(𝜉+𝜂)
𝑑𝜉 𝑑𝜂.

(2)

Perhaps unsurprisingly, we impose then similar conditions
on the derivatives of the symbol 𝜎 with the expectation
that they would yield indeed bounded operators 𝑇

𝜎
on

appropriate spaces of functions. The estimates that we have
in mind define the so-called bilinear Hörmander classes of
symbols, denoted by BS𝑚

𝜌,𝛿
. We say that 𝜎 ∈ BS𝑚

𝜌,𝛿
if


𝜕
𝛼

𝑥
𝜕
𝛽

𝜉
𝜕
𝛾

𝜂
𝜎 (𝑥, 𝜉, 𝜂)


≲ (1 +

𝜉
 +
𝜂
)
𝑚+𝛿|𝛼|−𝜌(|𝛽|+|𝛾|) (3)

for all 𝑥, 𝜉, 𝜂 ∈ R𝑛 and all multi-indices 𝛼, 𝛽, 𝛾. Note that we
need smoothness in 𝑥 as in the linear Hörmander classes. As
usual, the notation 𝑎 ≲ 𝑏 means that there exists a positive
constant𝐾 (independent of 𝑎, 𝑏) such that 𝑎 ≤ 𝐾𝑏.

With this terminology, we can restate Theorem A as
follows.

If the 𝑥-independent symbol 𝜎(𝜉, 𝜂) belongs to the class
BS0
1,0
, then𝑇

𝜎
is bounded from 𝐿𝑝×𝐿𝑞 into 𝐿𝑟 for all 1 < 𝑝, 𝑞 <

∞ such that 1/𝑝 + 1/𝑞 = 1/𝑟.
The condition of translation invariance (equivalently, the

𝑥-independence of the symbol) is superfluous. Moreover, the
previous boundedness result can be shown to hold for the
larger class of symbols BS0

1,𝛿
⊇ BS0
1,0
, where 0 ≤ 𝛿 < 1.This is a

known fact that is tightly connected to the bilinear Calderón-
Zygmund theory developed by Grafakos and Torres in [2]
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and the existence of a transposition symbolic calculus proved
by Bényi et al. [4]. Let us briefly give an outline of how this
follows. First, we note that the bilinear kernels associated to
bilinear operators with symbols in BS0

1,𝛿
, 0 ≤ 𝛿 < 1, are

bilinear Calderón-Zygmund operators in the sense of [2].
Second, we recall that [2, Corollary 1], which is an application
of the bilinear 𝑇(1) theorem therein, states the following.

Theorem B. If 𝑇 and its transposes, 𝑇
∗1 and 𝑇

∗2, have
symbols in BS0

1,1
, then they can be extended as bounded

operators from 𝐿
𝑝
× 𝐿
𝑞 into 𝐿𝑟 for 1 < 𝑝, 𝑞 < ∞ and

1/𝑝 + 1/𝑞 = 1/𝑟.

Third, by [4, Theorem 2.1], we have the following.

Theorem C. Assume that 0 ≤ 𝛿 ≤ 𝜌 ≤ 1, 𝛿 < 1, and 𝜎 ∈
BS𝑚
𝜌,𝛿
. Then, for 𝑗 = 1, 2,𝑇∗𝑗

𝜎
= 𝑇
𝜎
∗𝑗 , where 𝜎∗𝑗 ∈ BS𝑚

𝜌,𝛿
.

Finally, since BS0
1,𝛿

⊂ BS0
1,1
, we can directly combine

Theorems B and C to recover the following optimal extension
of the Coifman-Meyer result; note that now the symbol is
allowed to depend on 𝑥 while 𝑟 is still allowed to be in the
optimal interval (1/2,∞).

Theorem 1. If 𝜎 is a symbol in BS0
1,𝛿
, 0 ≤ 𝛿 < 1, then 𝑇

𝜎
has a

bounded extension from 𝐿𝑝 × 𝐿𝑞 into 𝐿𝑟 for all 1 < 𝑝, 𝑞 < ∞
such that 1/𝑝 + 1/𝑞 = 1/𝑟.

Once we have the boundedness of the class BS0
1,𝛿

on
products of Lebesgue spaces, a “reduction method” allows us
to deduce also the boundedness of the class BS𝑚

1,𝛿
on appro-

priate products of Sobolev spaces. Moreover, our estimates
in this case come in the form of Leibniz-type rules; for
more on these kinds of properties, see the work of Bernicot
et al. [5]. In the particular case when the bilinear operator
is just a differential operator, the Leibniz-type rules are
referred to as Kato-Ponce’s commutator estimates and are
known to play a significant role in the study of the Euler
and Navier-Stokes equations, see [6]; see also Kenig et al.
[7] for further applications of commutators to nonlinear
Schrödinger equations. Let 𝐽𝑚 = (𝐼 − Δ)

𝑚/2 denote the
linear Fourier multiplier operator with symbol ⟨𝜉⟩𝑚, where
⟨𝜉⟩ = (1 + |𝜉|

2
)
1/2. By definition, we say that 𝑓 belongs to the

Sobolev space 𝐿𝑝
𝑚
if 𝐽𝑚𝑓 ∈ 𝐿𝑝. We have the following.

Theorem 2. Let 𝜎 be a symbol in BS𝑚
1,𝛿
, 0 ≤ 𝛿 < 1, 𝑚 ≥ 0,

and let 𝑇
𝜎
be its associated operator. Then there exist symbols

𝜎
1
and 𝜎

2
in BS0
1,𝛿

such that, for all 𝑓, 𝑔 ∈ S,

𝑇
𝜎
(𝑓, 𝑔) = 𝑇

𝜎
1

(𝐽
𝑚
𝑓, 𝑔) + 𝑇

𝜎
2

(𝑓, 𝐽
𝑚
𝑔) . (4)

In particular, then one has that 𝑇
𝜎
has a bounded extension

from 𝐿𝑝
𝑚
× 𝐿
𝑞

𝑚
into 𝐿𝑟, provided that 1/𝑝 + 1/𝑞 = 1/𝑟, 1 < 𝑝,

𝑞 < ∞. Moreover,
𝑇𝜎 (𝑓, 𝑔)

𝐿𝑟
≲
𝑓
𝐿
𝑝

𝑚

𝑔
𝐿𝑞
+
𝑓
𝐿𝑝
𝑔
𝐿
𝑞

𝑚

. (5)

Theproof ofTheorem2 follows a similar path as the one in
the work of Bényi et al. [8,Theorem 2.7]. For the convenience

of the reader, we sketch here the main steps in the argument.
Let 𝜙 be a 𝐶∞-function on R such that 0 ≤ 𝜙 ≤ 1, supp
𝜙 ⊂ [−2, 2], and 𝜙(𝑟) + 𝜙(1/𝑟) = 1 on [0,∞). Then (4) holds
if we let

𝜎
1
(𝑥, 𝜉, 𝜂) = 𝜎 (𝑥, 𝜉, 𝜂) 𝜙(

⟨𝜂⟩
2

⟨𝜉⟩
2
)⟨𝜉⟩

−𝑚
,

𝜎
2
(𝑥, 𝜉, 𝜂) = 𝜎 (𝑥, 𝜉, 𝜂) 𝜙(

⟨𝜉⟩
2

⟨𝜂⟩
2
)⟨𝜂⟩

−𝑚
.

(6)

Now, straightforward calculations that take into account the
support condition on 𝜙 given that 𝜎

1
and 𝜎

2
belong to BS0

1,𝛿
.

The Leibniz-type estimate (5) follows now from Theorem 1
and (4).

It is also worthwhile to note that we can replace (5) with
a more general Leibniz-type rule of the form

𝑇𝜎(𝑓, 𝑔)
𝐿𝑟
≲
𝑓
𝐿
𝑝
1

𝑚

𝑔
𝐿𝑞1

+
𝑔
𝐿
𝑝
2

𝑚

𝑓
𝐿𝑞2
, (7)

where 1/𝑝
1
+1/𝑞
1
= 1/𝑝

2
+1/𝑞
2
= 1/𝑟, 1 < 𝑝

1
,𝑝
2
, 𝑞
1
, 𝑞
2
< ∞.

One of the main reasons for the study of the Hörmander
classes of bilinear pseudodifferential operators is the fact
that the conditions imposed on the symbols arise naturally
in PDEs. In particular, the bilinear Hörmader classes BS𝑚

𝜌,𝛿

model the product of two functions and their derivatives.

Example 3. Consider first a bilinear partial differential oper-
ator with variable coefficients

𝐷
𝑘,ℓ
(𝑓, 𝑔) = ∑

|𝛽|≤𝑘

∑

|𝛾|≤ℓ

𝑐
𝛽𝛾
(𝑥)

𝜕
𝛽
𝑓

𝜕𝑥𝛽

𝜕
𝛾
𝑔

𝜕𝑥𝛾
. (8)

Note that𝐷
𝑘,ℓ
= 𝑇
𝜎
𝑘,ℓ

, where the bilinear symbol is given by

𝜎
𝑘,ℓ
(𝑥, 𝜉, 𝜂) = (2𝜋)

−2𝑛
∑

𝛽,𝛾

𝑐
𝛽𝛾
(𝑥) (𝑖𝜉)

𝛽
(𝑖𝜂)
𝛾
. (9)

Assuming that the coefficients 𝑐
𝛽𝛾

have bounded derivatives,
it is easy to show that 𝜎

𝑘,ℓ
∈ BS𝑘+ℓ
1,0

.

Example 4. The symbol in the previous example is almost
equivalent to a multiplier of the form

𝜎
𝑚
(𝜉, 𝜂) = (1 +

𝜉


2
+
𝜂


2
)
𝑚/2

. (10)

Indeed, this symbol belongs to BS𝑚
1,0
.We can also think of this

symbol as the bilinear counterpart of the multiplier ⟨𝜉⟩𝑚 that
defines the linear operator 𝐽𝑚.

Example 5. With the notation in Example 4, the multipliers
𝜉𝜎
−1
(𝜉, 𝜂) and 𝜂𝜎

−1
(𝜉, 𝜂) belong to BS0

1,0
. In general, the

multipliers 𝜎
𝑘+ℓ
(𝜉, 𝜂) = 𝜉

𝑘
𝜂
ℓ
𝜎
−1
(𝜉, 𝜂) belong to BS𝑘+ℓ

1,0
.

Example 6. One of the recurrent techniques in PDE estimates
is to truncate a given multiplier at the right scale. Consider
now

𝜎 (𝜉, 𝜂) = 𝜎
𝑚
(𝜉, 𝜂) ∑

𝑎,𝑏∈N

𝑐
𝑎,𝑏
(𝑥) 𝜑 (2

−𝑎
𝜉) 𝜒 (2

−𝑏
𝜂) , (11)
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where𝜑 and𝜒 are smooth “cutoff” functions supported in the
annulus {1/2 ≤ |𝜉| ≤ 2}, and the coefficients satisfy derivative
estimates of the form

𝜕
𝛼

𝑥
𝑐
𝑎,𝑏
(𝑥)
𝐿∞

≲ 2
𝛿|𝛼|max(𝑎,𝑏)

. (12)

Elementary calculations show that 𝜎 ∈ BS𝑚
1,𝛿
.

Remark 7. Theorems 1 and 2 lead to the natural question
about the boundedness properties of other Hörmander
classes of bilinear pseudodifferential operators. An interest-
ing situation arises when we consider the bilinear Calderón-
Vaillancourt class BS0

0,0
. A result of Bényi andTorres [9] shows

that, in this case, the 𝐿𝑝 × 𝐿𝑞 → 𝐿
𝑟 boundedness fails.

One can impose some additional conditions (besides being in
BS0
0,0
) on a symbol to guarantee that the corresponding bilin-

ear pseudodifferential operator is 𝐿𝑝 × 𝐿𝑞 → 𝐿
𝑟 bounded;

see, for example, [9] and the recent work of Bernicot and
Shrivastava [10]. However, there is a nice substitute for the
Lebesgue space estimates. If we consider instead modulation
spaces𝑀𝑝,𝑞 (see the excellent book byGröchenig [11] for their
definition and basic properties), we can show, for example,
that if 𝜎 ∈ BS0

0,0
then 𝑇

𝜎
: 𝐿
2
× 𝐿
2
→ 𝑀

1,∞ (which contains
𝐿
1). This and other more general boundedness results on

modulation spaces for the class BS0
0,0

were obtained by Bényi
et al. [12]. Then, this particular boundedness result with the
reduction method employed in Theorem 2 allows us to also
obtain the boundedness of the class BS𝑚

0,0
from 𝐿2

𝑚
× 𝐿
2

𝑚
into

𝑀
1,∞. Interestingly, we can also obtain the 𝐿𝑝 × 𝐿𝑞 → 𝐿

𝑟

boundedness of the class BS𝑚
0,0
, but we have to require in this

case the order 𝑚 to depend on the Lebesgue exponents; see
the work of Bényi et al. [13], also Miyachi and Tomita [14] for
the optimality of the order 𝑚 and the extension of the result
in [13] below 𝑟 = 1. The most general case of the classes BS𝑚

𝜌,𝛿

is also given in [13].

In the remainder of the paper we will provide an alternate
proof ofTheorem 1 that does not use sophisticated tools such
as the symbolic calculus. The proof is in the original spirit
of the work of Coifman and Meyer that made use of the
Littlewood-Paley theory. As such, we will only be concerned
here with the boundedness into the target space 𝐿𝑟 with 𝑟 >
1. Of course, obtaining the full result for 𝑟 > 1/2 is then
possible because of the bilinear Calderón-Zygmund theory,
which applies to our case. We will borrow some of the ideas
from Bényi and Torres [15], which in turn go back to the nice
exposition (in the linear case) by Journé [16], by making use
of the so-called bilinear elementary symbols.

2. Proof of Theorem 1

We start with two lemmas that provide the anticipated
decomposition of our symbol into bilinear elementary sym-
bols. Since they are the immediate counterparts of [15,
Lemma 1 and Lemma 2] to our class BS0

1,𝛿
, we will skip their

proofs; see also [16, pp. 72–75] and [1, pp. 55–57]. The first
reduction is as follows.

Lemma 8. Fix a symbol 𝜎 in the class BS0
1,𝛿
, 0 ≤ 𝛿 < 1, and

an arbitrary large positive integer 𝑁. Then, for any 𝑓, 𝑔 ∈ S,
𝑇
𝜎
(𝑓, 𝑔) can be written in the form

𝑇
𝜎
(𝑓, 𝑔) = ∑

𝑘,ℓ∈Z𝑛

𝑑
𝑘ℓ
𝑇
𝜎
𝑘ℓ

(𝑓, 𝑔) + 𝑅 (𝑓, 𝑔) , (13)

where {𝑑
𝑘ℓ
} is an absolutely convergent sequence of numbers,

𝜎
𝑘ℓ
(𝑥, 𝜉, 𝜂) =

∞

∑

𝑗=0

𝜅
𝑗𝑘ℓ
(𝑥) 𝜓
𝑘ℓ
(2
−𝑗
𝜉, 2
−𝑗
𝜂) , (14)

with each 𝜓
𝑘ℓ

a 𝐶∞-function supported on the set {1/3 ≤

max (|𝜉|, |𝜂|) ≤ 1},

𝜕
𝛽

𝜉
𝜕
𝛾

𝜂
𝜓
𝑘ℓ
(𝜉, 𝜂)


≲ 1 ∀

𝛽
 ,
𝛾
 ≤ 𝑁,


𝜕
𝛼
𝜅
𝑗𝑘ℓ
(𝑥)

≲ 2
𝑗𝛿|𝛼|

∀ |𝛼| ≥ 0,

(15)

and 𝑅 is a bounded operator from 𝐿𝑝 × 𝐿𝑞 into 𝐿𝑟, for 1/𝑝 +
1/𝑞 = 1/𝑟, 1 < 𝑝, 𝑞, 𝑟 < ∞.

Now, if 𝜎
𝑘ℓ

is any of the symbols in (14) and we knew a
priori that𝑇

𝜎
𝑘ℓ

are bounded from𝐿𝑝×𝐿𝑞 into𝐿𝑟 with operator
norms depending only on the implicit constants from (15),
the fact that the sequence {𝑑

𝑘ℓ
} is absolutely convergent

immediately implies the 𝐿𝑝 × 𝐿𝑞 → 𝐿
𝑟 boundedness of 𝑇

𝜎
.

Our first step has thus reduced the study of generic symbols
in the class BS0

1,𝛿
to symbols of the form

𝜎 (𝑥, 𝜉, 𝜂) =

∞

∑

𝑗=0

𝑚
𝑗
(𝑥) 𝜓 (2

−𝑗
𝜉, 2
−𝑗
𝜂) , (16)

where ||𝜕𝛼𝑚
𝑗
||
𝐿
∞ ≲ 2

𝑗𝛿|𝛼|, and 𝜓 is supported in {1/3 ≤

max(|𝜉|, |𝜂|) ≤ 1}.
Our second step is to further reduce the simpler looking

symbol given in (16) to a sum of bilinear elementary symbols.

Lemma9. Let 𝜎 be as in (16). One can further reduce the study
to symbols of the form

𝜎 = 𝜎
1
+ 𝜎
2
+ 𝜎
3
, (17)

where the elementary symbols 𝜎
𝑘
, 𝑘 = 1, 2, 3, are defined via

𝜎
𝑘
(𝑥, 𝜉, 𝜂) =

∞

∑

𝑗=0

𝑚
𝑗
(𝑥) 𝜑
𝑘
(2
−𝑗
𝜉) 𝜒
𝑘
(2
−𝑗
𝜂) , (18)

with supp𝜑
1
⊆ {1/4 ≤ |𝜉| ≤ 2}, supp𝜒

1
⊆ {|𝜂| ≤ 1/8},

𝜑
3
= 𝜒
1
, 𝜒
3
= 𝜑
1
, supp𝜑

2
, supp𝜒

2
⊆ {1/20 ≤ |𝜉| ≤ 2}, and

||𝜕
𝛼
𝑚
𝑗
||
𝐿
∞ ≲ 2

𝑗𝛿|𝛼|.

Therefore, we are now only faced with the question of
boundedness for the two operators 𝑇

𝜎
1

and 𝑇
𝜎
2

, with 𝜎
1
and

𝜎
2
defined in Lemma 9; boundedness of 𝑇

𝜎
3

follows from that
of 𝑇
𝜎
1

by symmetry. In the following, for 𝑓, 𝑔 ∈ S, we write

�̂�
𝑗𝑘
(𝜉) = 𝜑

𝑘
(2
−𝑗
𝜉) �̂� (𝜉) ,

�̂�
𝑗𝑘
(𝜂) = 𝜒

𝑘
(2
−𝑗
𝜂) �̂� (𝜂) .

(19)
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In this case, for 𝑘 = 1, 2, we can write

𝑇
𝜎
𝑘

(𝑓, 𝑔) (𝑥) =

∞

∑

𝑗=0

𝑚
𝑗 (𝑥) 𝑓𝑗𝑘 (𝑥) 𝑔𝑗𝑘 (𝑥) . (20)

Claim 1. 𝑇
𝜎
2

is bounded from 𝐿𝑝 × 𝐿𝑞 into 𝐿𝑟.

Proof. By (20) and the Cauchy-Schwarz inequality, we can
write


𝑇
𝜎
2

(𝑓, 𝑔)

≤

∞

∑

𝑗=0


𝑚
𝑗




𝑓
𝑗2




𝑔
𝑗2



≲ (

∞

∑

𝑗=0


𝑓
𝑗2



2

)

1/2

(

∞

∑

𝑗=0


𝑔
𝑗2



2

)

1/2

.

(21)

We used here the fact that the coefficients 𝑚
𝑗
are bounded,

see Lemma 9. Using now Hölder’s inequality, we have


𝑇
𝜎
2

(𝑓, 𝑔)
𝐿𝑟
≲



(

∞

∑

𝑗=0


𝑓
𝑗2



2

)

1/2𝐿𝑝



(

∞

∑

𝑗=0


𝑔
𝑗2



2

)

1/2𝐿𝑞

. (22)

Finally, the conditions on the supports of 𝜑
2
and 𝜒

2
allow us

tomake use of the Littlewood-Paley theory and conclude that

𝑇
𝜎
2

(𝑓, 𝑔)
𝐿𝑟
≲
𝑓
𝐿𝑝
𝑔
𝐿𝑞
. (23)

Obtaining the boundedness of the operator 𝑇
𝜎
1

is a bit
more delicate due to the support condition on 𝜒

1
, specifically

having supp𝜒
1
contained in a disk rather than in an annulus.

Nevertheless, we still claim the following.

Claim 2. 𝑇
𝜎
1

is bounded from 𝐿𝑝 × 𝐿𝑞 into 𝐿𝑟.

Proof. Note first that we can still use the Littlewood-Paley
theory on the 𝑓

𝑗1
part of the sum that defines 𝑇

𝜎
1

(𝑓, 𝑔)(𝑥) =

∑
∞

𝑗=0
𝑚
𝑗
(𝑥)𝑓
𝑗1
(𝑥)𝑔
𝑗1
(𝑥). We have the following inequalities:



(

∞

∑

𝑗=0


𝑓
𝑗2



2

)

1/2𝐿𝑝

≲
𝑓
𝐿𝑝
,



sup
𝑗≥0

|𝑔
𝑗1
|

𝐿𝑞

≲
𝑔
𝐿𝑞
.

(24)

At this point, however, we must proceed more cautiously.
Observe that

supp𝑓
𝑗1
𝑔
𝑗1
⊂ supp𝑓

𝑗1
+ supp𝑔

𝑗1
⊂ {2
𝑗−3
≤
𝜉
 ≤ 2
𝑗+3
} .

(25)

Denoting then ℎ
𝑗1
:= 𝑓
𝑗1
𝑔
𝑗1
, we now have 𝑇

𝜎
1

(𝑓, 𝑔)(𝑥) =

∑
∞

𝑗=0
𝑚
𝑗
ℎ
𝑗1
, where ‖𝜕𝛼𝑚

𝑗
‖
𝐿
∞ ≲ 2

𝑗𝛿|𝛼|, and ℎ
𝑗1

satisfies the
support condition (25). Assume for the moment that the
following inequality holds:



∞

∑

𝑗=0

𝑚
𝑗
ℎ
𝑗1

𝐿𝑟

≲



(

∞

∑

𝑗=0


ℎ
𝑗1



2

)

1/2𝐿𝑟

. (26)

Then, the boundedness of the operator𝑇
𝜎
1

can be obtained as
follows:


𝑇
𝜎
1

(𝑓, 𝑔)
𝐿𝑟
=



∞

∑

𝑗=0

𝑚
𝑗
ℎ
𝑗1

𝐿𝑟

≲



(

∞

∑

𝑗=0


ℎ
𝑗1



2

)

1/2𝐿𝑟

≲



sup
𝑗≥0

|𝑔
𝑗1
| ⋅ (

∞

∑

𝑗=0


𝑓
𝑗1



2

)

1/2𝐿𝑟

≲



(

∞

∑

𝑗=0


𝑓
𝑗1



2

)

1/2𝐿𝑝



sup
𝑗≥0


𝑔
𝑗1



𝐿𝑞

≲
𝑓
𝐿𝑝
𝑔
𝐿𝑞
.

(27)

The proof of Claim 2 assumed the estimate (26). Our next
claim is that (26) is indeed true.

Claim 3. Assume that ‖𝜕𝛼𝑚
𝑗
‖
𝐿
∞ ≲ 2

𝑗𝛿|𝛼| and supp ℎ̂
𝑗
⊂

{2
𝑗−3
≤ |𝜉| ≤ 2

𝑗+3
}. Then, for all 𝑟 > 1, we have



∞

∑

𝑗=0

𝑚
𝑗
ℎ
𝑗

𝐿𝑟

≲



(

∞

∑

𝑗=0


ℎ
𝑗



2

)

1/2𝐿𝑟

. (28)

In our proof of this claim, we will make use of Journé’s
lemma [16, p. 69].

Lemma 10. There exists a constant 𝐶 > 0 such that, for all
𝑗 ≥ 0,𝑚

𝑗
= 𝑔
𝑗
+ 𝑏
𝑗
, where ‖𝑔

𝑗
‖
𝐿
∞ ≤ 𝐶, ‖𝑏

𝑗
‖
𝐿
∞ ≤ 𝐶2

(𝛿−1)𝑗, and
supp ℎ̂

𝑗
𝑔
𝑗
⊂ {2
𝑗
/72 ≤ |𝜉| ≤ 9 ⋅ 2

𝑗
}.

Proof of Claim 3. First, we consider the case 𝑟 = 2. With the
notation in Lemma 10, it suffices to estimate ‖∑∞

𝑗=0
𝑏
𝑗
ℎ
𝑗
‖
𝐿
2

and ‖∑∞
𝑗=0
𝑔
𝑗
ℎ
𝑗
‖
𝐿
2 .

The estimate on the “bad part” follows from the triangle
and Cauchy-Schwarz inequalities and the control ‖𝑏

𝑗
‖
𝐿
∞ ≲

2
(𝛿−1)𝑗; recall that 𝛿 < 1:



∞

∑

𝑗=0

𝑏
𝑗
ℎ
𝑗

𝐿2

≤

∞

∑

𝑗=0


𝑏
𝑗

𝐿∞


ℎ
𝑗

𝐿2

≤ (

∞

∑

𝑗=0


𝑏
𝑗



2

𝐿
∞
)

1/2

(

∞

∑

𝑗=0


ℎ
𝑗



2

𝐿
2
)

1/2

≲ (

∞

∑

𝑗=0

2
(2𝛿−2)𝑗

)

1/2

(

∞

∑

𝑗=0


ℎ
𝑗



2

𝐿
2
)

1/2

≲



(

∞

∑

𝑗=0


ℎ
𝑗



2

)

1/2𝐿2

.

(29)
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Let us now look at the “good part”. We start by noticing that,
given the two summation indices 𝑗, 𝑘 ≥ 0, we have

supp𝑔
𝑗
ℎ
𝑗
⊂ {

2
𝑗

72
≤
𝜉
 ≤ 9 ⋅ 2

𝑗
} ,

supp𝑔
𝑘
ℎ
𝑘
⊂ {

2
𝑘

72
≤
𝜉
 ≤ 9 ⋅ 2

𝑘
} .

(30)

Thus, for |𝑗 − 𝑘| ≥ 11, we have supp𝑔
𝑗
ℎ
𝑗
∩ supp𝑔

𝑘
ℎ
𝑘
= 0.

In view of this orthogonality, Plancherel’s theorem with the
estimate ‖𝑔

𝑗
‖
𝐿
∞ ≲ 1 gives



∞

∑

𝑗=0

𝑔
𝑗
ℎ
𝑗

𝐿2

≤

11

∑

𝑖=0



∞

∑

𝑘=0

𝑔
𝑖+11𝑘

ℎ
𝑖+11𝑘

𝐿2

≲ (

∞

∑

𝑗=0


𝑔
𝑗
ℎ
𝑗



2

𝐿
2
)

1/2

≤ (

∞

∑

𝑗=0


𝑔
𝑗



2

𝐿
∞


ℎ
𝑗



2

𝐿
2
)

1/2

≲



(

∞

∑

𝑗=0


ℎ
𝑗



2

)

1/2𝐿2

.

(31)

This completes the proof of the case 𝑟 = 2. In the general case
𝑟 > 1, we again seek the control of the “bad” and “good” parts.
The estimate on the “bad” part follows virtually the same as
in the case 𝑟 = 2:


∞

∑

𝑗=0

𝑏
𝑗
ℎ
𝑗

𝐿𝑟

≤



(

∞

∑

𝑗=0


𝑏
𝑗



2

)

1/2

(

∞

∑

𝑗=0


ℎ
𝑗



2

)

1/2𝐿𝑟

≤



(

∞

∑

𝑗=0


𝑏
𝑗



2

)

1/2𝐿∞



(

∞

∑

𝑗=0


ℎ
𝑗



2

)

1/2𝐿𝑟

≲



(

∞

∑

𝑗=0


ℎ
𝑗



2

)

1/2𝐿𝑟

,

(32)

wherewe usedMinkowski’s integral inequality in the last step.
For the “good” part, we can think of 𝑔

𝑘
ℎ
𝑘
as being dyadic

blocks in the Littlewood-Paley decomposition of the sum
𝑆
𝑖
:= ∑
𝑘≡𝑖 ( mod 11) 𝑔𝑘ℎ𝑘. Thus, it will be enough to control

uniformly (in the 𝐿𝑟 norm) the sums 𝑆
𝑖
, 0 ≤ 𝑖 ≤ 11, in order

to obtain the same bound on ‖∑
𝑗≥0
𝑔
𝑗
ℎ
𝑗
‖
𝐿
𝑟 . The control on

𝑆
𝑖
however follows from the uniform estimate on the 𝑔

𝑘
’s and

an immediate application of Littlewood-Paley theory.
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