April 2014

Characterizing changes in Puget Sound benthic infaunal invertebrate assemblages: A functional approach

Valerie Partridge
Washington (State). Department of Ecology, VPar461@ECYWA.GOV

Maggie Dutch
Washington (State). Department of Ecology

Sandra Weakland
Washington (State). Department of Ecology

Kathy Welch
Washington (State). Department of Ecology

Clifton Herrmann
Washington (State). Department of Ecology

Follow this and additional works at: https://cedar.wwu.edu/ssec
Part of the Terrestrial and Aquatic Ecology Commons

Partridge, Valerie; Dutch, Maggie; Weakland, Sandra; Welch, Kathy; and Herrmann, Clifton, "Characterizing changes in Puget Sound benthic infaunal invertebrate assemblages: A functional approach" (2014). Salish Sea Ecosystem Conference. 20.

This Event is brought to you for free and open access by the Conferences and Events at Western CEDAR. It has been accepted for inclusion in Salish Sea Ecosystem Conference by an authorized administrator of Western CEDAR. For more information, please contact westerncedar@wwu.edu.
Characterizing Changes in Puget Sound Benthic Infaunal Invertebrate Assemblages: A Functional Approach

Valerie Partridge*
Margaret Dutch
Sandra Weakland
Kathy Welch
Clifton Herrmann

Washington State Department of Ecology

Salish Sea Ecosystem Conference
April-May 2014
Spatial Monitoring

- Baseline 1997-2003
- 2nd Round 2004-2014
- 10-yr regional and 6-yr urban bay rotation
- Probabilistic, random stratified design
- **Sediment Quality Triad** = Chemistry, Toxicity, Benthos
Changes in Regions and Bays

Toxicity: Increase in low-level toxicity

Chemistry: No change or slight improvement

Benthos: Increase in Adversely Affected

Triad: Deterioration in overall sediment quality, driven primarily by benthos
Declines in Abundance, Richness

- Total Abundance
 - Percent Change in Median
 - * = significant

- Taxa Richness
 - Percent Change in Median
 - * = significant

Regions:
- Hood Canal
- Str. of Georgia
- Whidbey Basin
- Central Puget
- South Sound
- San Juan Is.
- All 6 Regions
- Elliott Bay
- Commence. Bay
- Bainbridge Basin
- All 3 Urban Bays

All 6 Regions
- Hood Canal
- Str. of Georgia
- Whidbey Basin
- Central Puget
- South Sound
- San Juan Is.
- All 3 Urban Bays
Bellingham Bay 2010

100% Adversely Affected benthos

2010 (n=30)

Benthic Index
- Green: Unaffected
- Red: Adversely affected

Map of Portage Channel, Bellingham Bay, and Fairhaven.
Change Between 1997 and 2006?
Correlation of Benthos & Env. Variables

- Bio-Env (PRIMER)
- Input Variables: Metals, ΣPAHs, TOC, Grain Size, Toxicity Index, Depth
- Spearman correlation = 0.53 (all samples)
- Range 0.57 – 0.80 for individual regions/bays
- Top Variables: Depth, Grain Size, Cd, Toxicity Index
Hypothesis: Changes in the Marine Food Web and Energy Transfer in Puget Sound

Microbial-based food web

+ Nitrogen

Diatom-based food web

Si:N

Changing food web and more near-surface nutrient cycling

10% 10% 10%

- nutrient cycling in the sediment

+ nutrient cycling in the water

Less sinking of diatom particles

Decreased coupling between the water and sediment

Benthic animals

Declining community of organisms in the sediment

Drawn by Christopher Krembs
Feeding Guilds

(Macdonald et al., 2012)

<table>
<thead>
<tr>
<th>Surface Detritivore</th>
<th>Subsurface Detritivore</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aphelochaeta sp N5</td>
<td>Heteromastus filobranchus</td>
</tr>
<tr>
<td>Eudorella pacifica</td>
<td>Cossura pygodactylata</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Facultative Detritivore</th>
<th>Benthic Carnivore</th>
</tr>
</thead>
<tbody>
<tr>
<td>Axinopsida serricata</td>
<td>Pholoe minuta</td>
</tr>
<tr>
<td>Owenia johnsoni</td>
<td>Odostomia sp</td>
</tr>
<tr>
<td>Euphilotomodes carcharodonta</td>
<td>Sigambra bassi</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Facultative Carnivore</th>
<th>Other:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scoletoma luti</td>
<td>Suspensivore</td>
</tr>
<tr>
<td>Bipelponphyls cornuta</td>
<td>Herbivore</td>
</tr>
<tr>
<td>Lumbrineris californiensis</td>
<td>Planktivorous Carnivore</td>
</tr>
<tr>
<td></td>
<td>Macro-Omnivore</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Suspensivore</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lyonsia californica</td>
</tr>
</tbody>
</table>
Surface Deposit Feeders

Abundance (# orgs/0.1 m2)
- 0 - 143
- 146 - 377
- 410 - 781
- 813 - 1530
- 1789 - 2809
Facultative Detritivores

Abundance (# organs/0.1 m²)
- 0 - 295
- 300 - 717
- 751 - 1680
- 2188 - 3044
- 4515 - 5387
Other Possible Mechanisms?

- Low DO in porewater and at sediment/water interface
- Ammonia/sulfides
- Changing pH
- Contaminants
 - Point/nonpoint
 - Contaminants of Emerging Concern
 - Slow migration to deeper areas
 - Delayed population-level effects
- Natural cycles