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Abstract

 

The Salish sucker (Catostomus sp.) is a recently described endemic fish species with a 

patchy distribution and a narrow geographic range in western Washington and 

southwestern British Columbia.  In this study I examined populations within the 

Nooksack River watershed, attempting to elucidate the environmental factors 

contributing to observed patterns of distribution and abundance.  I hypothesized that 

hypoxic and hyperthermic conditions during the summer months would restrict Salish 

sucker distribution.  I tested this hypothesis by measuring dissolved oxygen 

concentrations, temperature, and Salish sucker abundance and movement at eight sites in 

the Bertrand Creek and Fishtrap Creek sub-basins.  The results of this study did not 

support my original hypothesis; instead it seems more likely that physical habitat 

characteristics rather than water quality exert greater influence in patterns of abundance 

and distribution.  My findings emphasize the importance of maintaining the quality and 

connectivity of habitat for Salish sucker conservation.  
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Introduction 

 

Biodiversity of native freshwater fishes is declining in North America (Miller et al. 1989, 

Duncan and Lockwood 2001).  The Catostomidae family in particular faces challenges to 

its conservation and management, as most of the species within the family are classified 

as “non-game” fish and consequently do not often draw the attention of wildlife 

management agencies (Cooke et al. 2005).  In the Pacific Northwest, economically 

important fishes such as halibut and salmonids are aggressively managed, while non-

game fish are often without management strategies until listed as threatened or 

endangered by a regulatory agency. 

A recently described representative of the Catostomus genus of fishes, the Salish 

sucker (Catostomus sp.) is endemic to the Pacific Northwest, descended from an ancestral 

population of the wide-ranging Longnose sucker (Catostomus catostomus) (McPhail and 

Taylor 1999).  During the Pleistocene ice age, glaciers extended south across Puget 

Sound, allowing the species to evolve in isolation from the Longnose sucker (Pearson and 

Healey 2003).  Currently, the Salish sucker has a limited distribution in several 

watersheds throughout lowland western Washington and in small streams in southwest 

British Columbia, just north of the international border (Wydoski and Whitney 2003).  

The northernmost population of Salish suckers that straddles the border in the Nooksack 

River watershed is in decline in British Columbia, and has been extirpated from several 

streams in the area (McPhail 1987, Pearson 1999).  In Canada the species is protected 

under the federal government’s Species At Risk Act (SARA) (DFO 2004).  In the United 

States, the Salish sucker is listed at the state level by the Washington Department of Fish 
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and Wildlife as a monitor species, a designation that reflects the need for more research 

and monitoring to prevent a threatened or endangered listing in the future (WDFW 2012). 

Habitat loss and degradation is recognized as a primary cause of decline in the 

Canadian population of Salish suckers (BCMOE 1993, Pearson and Healey 2003), and 

land use development on both sides of the border presents a challenge to the recovery and 

protection of the species.  For decades much of the natural landscape in this area has been 

used in dairy production and berry farming.  More recently, residential development has 

altered the landscape and the watersheds as population centers southeast of Vancouver, 

such as Abbotsford, have expanded.  Management and recovery of this trans-national 

sucker population has been made more complicated by the divergent policy actions of 

Canada and the United States.  

Habitat loss and degradation take many forms in Salish sucker streams and vary 

with land use.  Changes to the physical structure of the streams that may impact Salish 

suckers are ubiquitous throughout the watershed.  Channelization, especially prevalent on 

agricultural lands where streams have been reduced to roadside ditches, has reduced 

habitat complexity (McPhail 1987, DFO 2009).  Water diversions for agriculture can 

reduce habitat availability and connectivity between sites.  Culverts, dams, and other 

human made obstacles in the stream may hinder migration throughout the watershed, a 

major cause of imperilment of freshwater fish in general and catostomids in particular 

(Allan and Flecker 1993, Cooke et al. 2005). 

Habitat can also be degraded due to worsening water quality.  Increased nutrient 

inputs to streams, particularly the limiting nutrients nitrogen and phosphorus, are 
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pervasive in both urban and agricultural landscapes.  In agricultural areas, livestock 

manure and fertilizers are the biggest components of nonpoint nutrient pollution to 

streams (Carpenter et al. 1998).  The nutrients received by the streams drive the process 

of eutrophication; excessive aquatic plant growth leads to an increase in the biological 

oxygen demand, depleting the levels of dissolved oxygen in the stream, often to the 

detriment of fish species (Dodds and Welch 2000).  

The influence of land use and habitat degradation on stream ecosystems and fish 

populations has been well studied (Karr and Schlosser 1978, Jelks et al. 2008, Utz et al. 

2010).  Streams having riparian zones with natural vegetation and ecological function are 

often able to offset some of the deleterious effects that certain land use types have on 

water quality (Naiman and Décamps 1997), and restoration of these riparian zones has 

been a strategy for stream recovery for some time (Greenwood et al. 2012).  There 

remains some question as to the effectiveness of this strategy in mitigating land use 

conversion within the watershed.  Central to this question is a continuing debate judging 

the relative importance of scale in influencing the water quality and biotic integrity (Roth 

et al. 1996, Lammert and Allan 1999).  Specifically, researchers have asked whether 

large-scale factors (basin-wide land use) are more important than small-scale factors 

(riparian corridors) in determining stream characteristics.  The previously mentioned 

studies suggest that the evaluation of habitat at multiple scales should be considered in 

assessing habitat degradation and implementing stream restoration projects. 

The complexity of addressing land use and habitat loss to recover the Nooksack 

watershed Salish sucker population is compounded by the dearth of existing knowledge 
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regarding the life-history and ecology of the species.  Understanding the attributes unique 

to a particular fish species is important for establishing the most effective conservation 

and management strategies (Carlson and Muth 1993).  Much of what is known about the 

Salish sucker is the product of research by a small handful of scientists or is inferred 

through the studies of its closest relative, the longnose sucker (Pearson 1999).  Salish 

suckers prefer pools and lentic backwaters or beaver ponds in low-order tributary 

streams, but need access to shallow riffles with gravel for spawning (Pearson and Healey 

2003).  This aspect of their ecology necessitates a certain degree of habitat connectivity, 

which may decline during certain flow conditions and could be exacerbated by habitat 

degradation (Pearson 1999). 

Dissolved oxygen and temperature tolerances, two factors that are known to limit 

the distribution of fish (Cech et al. 1990, Smale and Rabeni 1995), are unknown for the 

Salish sucker.  In many aquatic ecosystems, dissolved oxygen and other environmental 

parameters may be seasonally volatile.  For example, the typical lack of rainfall during 

the Pacific northwest summer may leave a small stream more susceptible to decreases in 

dissolved oxygen and higher water temperatures.  Land use activities that alter physical 

habitat or increase nutrient inputs to streams may exacerbate seasonal fluctuations of 

dissolved oxygen and temperature (Wiejters et al. 2009).  Stream flow and channel 

morphology can also influence oxygen concentration.  Low-gradient, low-velocity, 

channelized streams experience less mixing of water and less diffusion of oxygen into the 

stream (Garvey et al. 2007).  Previous research has found that hypoxic conditions are 

present in some reaches within the Bertrand and Fishtrap Creek watersheds during the 



5 
 

summer when flows normally are at their lowest and water temperature is highest for the 

year (Pearson 1999).    

Flow regime is also important in regulating fish distribution (Horwitz 1978, Bain 

et al. 1988, Stalnaker et al. 1996).  Changes in hydraulic conditions can influence fish 

distribution by creating physical barriers to movement within a stream, impacting the 

suitability of certain habitats in a stream, and increasing fluctuations and the extremes in 

water quality parameters (Magoulick and Kobza 2003).  It is not known how Salish 

sucker populations in the Nooksack watershed are affected by or respond to changing 

flow levels.  Anthropogenic habitat loss, coupled with reduced flows during the summer, 

may restrict Salish suckers to specific refuge habitats within a stream if certain reaches 

become inaccessible or if flow mediated conditions make the water quality intolerable.   

Whether through the effects of flow, dissolved oxygen, temperature, or a 

combination of factors, changes to the stream environment restrict fish distributions 

(Magoulick and Kobza 2003).  Dewatering or physical disruption of surface flow can 

restrict access to habitat, while changes in water quality can render habitats uninhabitable 

or metabolically suboptimal (Kushlan 1976).  The result is that the habitat available to 

fish decreases as does the ability to move between habitats.  In these cases, refuge 

habitats where tolerable water quality exists may become important to the persistence of 

a fish population in a stream with frequent disturbance (Lancaster and Belyea 1997).  The 

Salish sucker populations in the Bertrand and Fishtrap watersheds already contend with a 

stream environment marked by dry summers, resulting in decreased flow and some 

change in the temperature and dissolved oxygen.  Understanding the prevalence and 
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severity of these habitat limiting factors and their influence on Salish sucker populations 

is important in determining the appropriate steps in conserving the species. 

 

Objectives and Hypotheses 

This study was intended to examine the following questions related to Salish sucker life 

history. 

1. What factors limit Salish sucker abundance and distribution, and how, in particular, is 

fish abundance and distribution related to hypoxia and hyperthermia during the summer 

low flow period?  I hypothesized that seasonal drought during the summer would create 

suboptimal temperature and dissolved oxygen conditions for suckers in some study 

reaches and that other reaches would serve as refuge habitats for fish avoiding these 

stressful conditions.  Accordingly, I hypothesized that sites with lowest levels of 

dissolved oxygen in summer would have the lowest abundances of Salish sucker. 

2. How do Salish suckers move between study sites?  Related to the first objective, I 

wanted to document immigration of Salish suckers into refuge habitats, with particular 

attention to transboundary migrations of fish between Canada and the United States.  I 

hypothesized that individual fish would outmigrate from summer-hypoxic sites at the 

onset of summer low flow conditions. 

3. What is the Salish sucker population structure in terms of fish total lengths?  I 

intended to compare the size structure of Salish sucker populations between sites and had 

no hypothesis regarding size and site. 



7 
 

4. What types of land use occur within the two watersheds in this study and what are the 

implications for Salish sucker conservation?  My primary objective was to compare and 

contrast the land use between the two watersheds, between Canada and the United States, 

and between study sites.  This objective was exploratory in nature with no hypothesis 

developed. 

 

Methods 
 
Study Sites 

Data were collected at eight study sites within the Bertrand Creek and Fishtrap Creek 

watersheds (Figure 1).  Bertrand Creek and Fishtrap Creek are tributaries of the 

Nooksack River, both of which originate in southwest British Columbia, Canada and 

flow across the international border to discharge into the Nooksack River in northwestern 

Washington, USA.  Five of the sites are part of the Bertrand Creek sub-basin and the 

remaining three are within the Fishtrap Creek sub-basin.  Of the Bertrand Creek sites, two 

are located in the United States and three are in Canada.  Of the Fishtrap Creek sites, two 

are in Canada and the remaining site is in the United States.  Sites were chosen according 

to a combination of factors including likelihood of Salish sucker presence, habitat variety, 

proximity to adjacent sites, and accessibility.  To ensure a meaningful study with usable 

data, some sites known to support suckers were selected a posteriori based on previous 

studies (Mike Pearson, Pearson Ecological, mike@pearsonecolocal.com, pers. comm.)  

The drainage area of these watersheds is low elevation and the landscape has been 

extensively altered, much of it converted to agriculture and residential developments.  

Minimal rainfall during the summer, the absence of a winter snowpack, and water 
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diversions for agricultural activities all contribute to great fluctuations in stream 

discharge and temperature from summer to winter (Table 1). 

 

Middle Maberry Pond (Maberry) 

This site is part of Bertrand Creek in Washington, south of Loomis Trail Road near 

Lynden.  The creek at this site flows through the Maberry Farm, a commercial raspberry 

operation.  Small dams across the creek create a series of three ponds on the property, the 

middle pond being chosen as a site in this study.  An aerator is present in the pond that 

may prevent hypoxic summer conditions.  

 

Bertrand Creek near Cave Creek confluence (Bertrand) 

The second site in the Bertrand Creek watershed is the Bertrand Creek mainstem where 

Cave Creek enters Bertrand just south of the international border.  The riparian zone is 

heavily wooded while the surrounding area is pastureland and forest.  This reach is a 

mixture of substrate, with boulders, cobble, gravel, sand, and clay all represented.  Our 

specific trap site is just upstream from the mouth of Cave Creek, in a deep pool where the 

creek makes a sharp bend. 

 

Cave Creek at 248th Street (Cave) 

The third site in the Bertrand watershed is located in Cave Creek, a small tributary with 

intermittent flow during the summers.  The study site is located in British Columbia east 
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of 248th street, in a large pool just upstream from a culvert.  This site is near pastureland 

but retains a vegetated riparian corridor. 

 

Howe’s at 16th Street (Howe’s) 

Howe’s Creek is a Bertrand Creek tributary in British Columbia entering Bertrand near 

the intersection of 16th Street and 264th Street.  The study site on this tributary is located 

near the mouth of Howe’s Creek.  The creek at this location has been channelized for 

several hundred meters and lies within a seasonally inundated marshland.   

Channelization has reduced the habitat complexity to a single glide in this reach but 

willows and other deciduous trees grow to the banks and a habitat restoration project has 

placed some woody debris in the channel. 

 

Bertrand at 33nd Street (Aldergrove) 

The fifth and most upstream site in the Bertrand watershed is part of the Bertrand Creek 

mainstem, in a large, vacant lot near a subdivision in Aldergrove, British Columbia.  

Flowing along the forested edge of the lot, Bertrand Creek at this location does retain 

habitat complexity and canopy cover.  The trap location is in a large shaded pool, 

immediately downstream from a shallow riffle. 

 

East Double Ditch Creek (Double Ditch) 

East Double Ditch Creek is a tributary to Fishtrap Creek that has been re-routed to the 

roadside ditch running alongside Double Ditch Road in Washington.  Commercial berry 
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farms and dairy farms dominate the surrounding landscape.  This reach lacks habitat 

complexity, consisting of a straight channel holding a long glide and no woody debris or 

canopy cover other than reed canary grass (Phalaris arundinacea). 

 

Gordon’s Brook (Gordon’s Brook) 

Situated less than 1 km north of the East Double Ditch site and across the international 

boundary in British Columbia, the Gordon’s Brook study site is a different reach on  the 

same tributary (known as Pepin Creek in Canada rather than Double Ditch).  Here the 

creek meanders through multiple channels in a low-lying area near pastures and farms 

before forming a single channel at the border.  The trap location is on the western-most 

channel in a shallow pool upstream from a small culvert.  Upstream from this location are 

several large ponds know to support an abundance of Salish suckers in the recent past 

(Pearson 2004). 

 

Salish Creek (Salish) 

Salish Creek is a small Pepin Creek tributary situated on the edge of a gravel pit and 

aggregates business in British Columbia.  The creek is sluggish and marshy, with a 

narrow riparian corridor of reed canary grass and an overstory of willows.  The trap site 

is located in a deep glide just downstream from where the creek broadens into a pond.  
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Data Collection  

To examine factors that limit Salish sucker abundance and distribution, physical habitat 

characteristics, dissolved oxygen concentration, stream temperature, and flow were 

measured at each of the eight sites.  The physical habitat of each study site was measured 

once during the summer of 2011 (Table 2) in accordance with the standardized methods 

outlined by the American Fisheries Society (Bain and Stevenson 1999).  Three transects 

perpendicular to flow were used to describe the physical habitat characteristics at each 

site.  The middle transect was positioned over the area of the stream where the fish 

trapping would later take place.  The other two transects were located upstream and 

downstream from the middle, either 25 meters from the middle transect if the trap site 

and adjacent habitat were homogenous, or at the ends of the specific macrohabitat if the 

site represented a discrete habitat unit.  Cross-sectional profiles measuring bankfull 

width, wetted width, depth, substrate composition, and canopy cover were created.  

Water levels were measured continuously from April through November 2011 using a 

pressure sensor water level logger (HOBO
 U20 water level logger, Onset Computer 

Corp., Bourne, MA).  Water level data were used to confirm differences between high 

and low flow periods. 

Stream temperatures, dissolved oxygen concentrations, and Salish sucker 

populations were assessed contemporaneously on multiple sampling visits.  After initial 

study site visitation and selection, each site was visited twice during the period from early 

April to early June (high flow period) and twice again during October and November 

(high flow period).  A more concentrated sampling effort was made during August and 
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early September (low flow period), when each site was sampled 3-5 times.  I aimed for a 

balanced data set between each flow period in scheduling the sampling.  The temporal 

separation between the sampling periods was intended to give some distance in order to 

detect differences in Salish sucker abundance between summer low flow period and the 

high flow period of spring and fall.   

For each sampling visit, I measured temperature and dissolved oxygen 

concentration in the evening (i.e., <2 hours before sunset) and again in the morning (i.e., 

<2 hours after sunrise) of the following day using a hand-held dissolved oxygen meter 

(YSI Professional Series ProODO™ meter, YSI Inc., Yellow Springs, OH).  Both sets of 

measurements were conducted at approximately middle depth near the mid-point of the 

study reach.  The unit was calibrated for dissolved oxygen readings before every 

sampling period with the water saturated air method according to the user manual.  For 

quality assurance we collected water samples during approximately 20% of site visits and 

performed dissolved oxygen analyses via Winkler titration (IWS 2012).  For each 

sampling visit, I used average temperature and dissolved oxygen values (i.e., the mean of 

evening and morning measurements) as variables, since these were amenable to statistical 

analysis and were indicative of site conditions during the time when fish were collected.  

Differences between evening and morning measurements were considered indicative of 

diel fluctuations and a potential influence on eutrophication and hypoxia. 

To measure Salish sucker abundance, traps were used to capture fish at each site.   

Custom-made cylindrical, funnel-type fish traps designed by Mike Pearson (Pearson 

2009) and smaller store-bought models (a design commonly referred to as minnow traps) 
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were used in this study.  These traps were baited with cat food and left on the stream 

bottom overnight, near the deepest point of the site.  The following morning traps were 

pulled from the water and the Salish suckers were identified and enumerated.  Catch per 

unit effort (CPUE) was used to describe fish abundance and was calculated as the number 

of fish captured per trap volume (m3) per hours spent trapping.  Fish sampling was 

suspended on occasions when dissolved oxygen concentrations or temperatures 

approached lethal thresholds for Salish suckers or salmonid fishes to the extent that 

trapping or measuring activities were likely to cause stress-related mortality.  

To investigate the possibility of movement of individuals between sites, we 

marked Salish suckers with passive integrated transponder (PIT) tags (Biomark™ HPT9 

9 mm 134.2 kHz, Biomark, Inc., Boise, ID) at five study sites.  Fish were first 

anesthetized with tricaine methanesulfonate (MS-222) and tags were injected into the 

fish’s body cavity.  The tags’ unique identification numbers were read and recorded along 

with the date of capture and total length of the fish.  During subsequent visits to the sites, 

all Salish suckers were scanned with a pocket scanner to determine if the fish were 

recaptured.  The recapture at any site of a fish that had been tagged at another site was 

considered indicative of migration between the two sites.  Significant migration to a 

particular site during the summer low flow season was considered indicative of refuge 

habitat.  Pit-tagging occurred at the Gordon’s Brook, Double Ditch, Cave, Bertrand and 

Howe’s sites.  Gordon’s Brook and Double Ditch, located on Pepin Creek and separated 

by approximately 800 meters of stream, were chosen because of their proximity to each 

other and their positions on either side of the international border.  The same rationale 
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was used for Cave and Bertrand Creeks, with the Cave Creek site also having the 

distinction of containing a large pool in an otherwise ephemeral stream reach. For this 

reason I believed the Cave Creek site could provide a refuge habitat.  Fish at Howe’s at 

16th Ave. were tagged to expand the effort of the mark-recapture study undertaken by our 

Canadian colleagues at Pearson Environmental and the University of British Columbia.  

To compare Salish sucker population structure between study sites, length-

frequency histograms were generated with the total lengths obtained during each round of 

sampling.  Total lengths were measured in the field to the nearest millimeter and fish 

were immediately released. 

To examine the differences in land use among watersheds, nations, and individual 

sites, I assessed patterns of land use using digitized aerial photographs (ArcGIS™  10.1 

for Desktop, Esri, Inc., Redlands, CA).  Three categories were used to describe the 

landscape: urban, forest, and agriculture.  Urban land was restricted mostly to the 

communities of Lynden, Aldergrove, and Abbotsford and included high density 

residential subdivisions, business areas in the downtown core, and business parks and 

large parking lots in the areas outside of the downtown core.  Forest land included forests 

or land with naturally occurring tall, woody shrubs capable of providing shade.  

Agricultural lands included croplands, dairy farms and associated buildings, pasturelands, 

vacant fields and large rural residential lots with homes, as well as several gravel pits.  

Two scales were used to determine land use; a coarse-scale analysis at a 1:50,000 scale 

for the purpose of examining land use in each watershed and each country, and a fine-

scale analysis at a 1:6,000 scale to examine land use in a small buffer zone near each 
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study site.  Buffer zones were 1- km reaches upstream from the site, including the land 

within 100 m of each side of the reach. 

 

Data Analysis 

To analyze the presence and extent of hypoxia and hyperthermia in Salish sucker habitat, 

the corresponding trends in abundance, and the existence of refuge habitats, I choose a 

fine-scale, site level approach as well as two broader analyses.  Examining hypoxia, 

hyperthermia, abundance, and refuge habitats was done within each of the eight sites 

across the two levels of flow period (high flow and summer low flow).  This provided the 

fine-scale analysis based on the conditions within each individual site.   

I also wanted to examine the same questions of hypoxia, hyperthermia, 

abundance, and refuge on a larger scale.  An analysis at the watershed level could provide 

a broader, ecologically relevant focus.  To do this, I pooled the sites together by 

watershed (three sites for Fishtrap and five for Bertrand).  This approach had the added 

benefit of increasing the power of statistical tests by increasing the sample size.  In the 

fine-scale, site specific analysis, each site had been sampled as few as four times during a 

flow period “treatment.”  With the amalgamation of the site data into watersheds for a 

coarse-scale analysis, the greater power afforded to statistical tests might offer a better 

opportunity to detect differences between the flow periods.   

The second coarse-scale examination had more geo-political relevance than 

ecological.  To see if there were differences in the conditions of Salish sucker habitat and 

fish abundance between Canada and the United States, sites were pooled based on nation.  



16 
 

There were three sites in Washington and five sites in British Columbia.  I hoped that this 

analysis, combined with watershed land use, might provide some insight into Salish 

sucker conservation prospects for each country.  As in the watershed level analysis, this 

nation level approach used combined data and provided a more powerful test than the 

individual site level tests.  

Much of the habitat data was not normally distributed, necessitating a non-

parametric approach to the analysis.  To investigate changes in dissolved oxygen, 

temperature, and abundance based on flow period, I used Kruskal-Wallis tests to confirm 

any significant differences (Zar 1996).  I used this approach for all levels of the data; the 

fine-scale, site specific analysis and the two coarse-scale watershed and nation level 

analyses.  In the site specific analysis, when I compared multiple sites within a single 

flow period, I followed the Kruskal-Wallis test with a pairwise Wilcoxon test with a 

holms correction factor (Zar 1996).  To investigate factors affecting abundance I used 

Kendall’s tau rank-based correlation analysis to look for relationships between CPUE and 

several measures of physical habitat (Zar 1996). 

I used the Kolmogorov-Smirnov test to determine whether the total length 

distribution of Salish suckers differed between sites (Gotelli and Ellison 2004).  The 

Bertrand, Gordon’s Brook, and Double Ditch sites were omitted from the analysis due to 

their small sample sizes.  As the Kolmogorov-Smirnov test is applicable to two 

independent samples, I made 10 pair-wise comparisons, representative of all the possible 

combinations of tests among the five sites included in the analysis.  With a standard α = 

0.05, the compounded probability of a type I error would be 1 - (1 - 0.05)10 = 0.40 under 
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this method.  To reduce the probability of a type I error, I accepted a significance level of 

α = 0.01 for each test between individual sites, reducing the overall probability of a type I 

error to 0.0956. 

 

Results 

Abundance related to hypoxia/hyperthermia and physical habitat 

The Kruskal-Wallis tests indicated that there were significant differences in dissolved 

oxygen among flow periods for three of the eight sites (Table 3, Figure 2).  The seasonal 

differences in temperature were more consistent, with tests revealing that six of the eight 

sites had higher stream temperatures during low flow period than during high flow (Table 

3, Figure 3).   

When the data were pooled and dissolved oxygen and temperature were analyzed 

at the watershed level, more statistically significant differences emerged.  Testing for 

seasonal differences in mean dissolved oxygen concentration and mean temperature 

revealed that both variables showed significant differences dependent on flow period 

(Table 3).  As expected, stream temperatures were higher and dissolved oxygen lower in 

the low flow period than during high flow.  The temperatures in both watersheds 

fluctuated more widely around the median during the high flow period than during low 

flow.  The median dissolved oxygen concentrations differed by less than 2 mg∙L-1 

between flow regimes in each watershed (Figure 4).   

The second coarse-scale analysis of the data at the nation level showed that this 

grouping into nations also yielded differences in dissolved oxygen concentration and 
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temperature based on flow period (Table 3, Figure 4); both variables varied seasonally in 

Canada and the United States, with the predictable increase in temperature and decrease 

in dissolved oxygen observed during the low flow period.    

Salish suckers were captured at all sites at least once during the sampling season.  

There were no significant differences in seasonal Salish sucker abundance within the 

individual sites (Table 3).  Changes in Salish sucker abundance at the watershed level and 

nation level based on flow period were also not significant.  Median CPUE for both 

watersheds was at or near zero for low and high flows (Figure 5).  The CPUE ranged 

widely for most sites, usually with wider variation above the median than below.   

Of the physical habitat variables measured, correlation analysis revealed that the 

strongest correlation for CPUE was with average site depth (Kendall’s τ = 0.924, p = 

0.002) (Table 4).  The trend shows that in this study Salish suckers tended to be more 

abundant in the deeper sites (Figure 6). 

 

Immigration to Refuge Habitats 

A total of 40 Salish suckers were PIT tagged at five sites (Table 5).  Only fish at the Cave 

Creek site were recaptured, with eight marked individuals eventually being recaptured 

during subsequent visits.  One of these fish was recaptured twice.  At the Howe’s Creek 

site, many Salish suckers were previously PIT tagged by our Canadian colleagues during 

an unrelated study and we captured two of these previously marked individuals.  There 

was no movement of individual fish among sites documented in my study; all recaptured 

fish were trapped in the study site where they were originally marked.  Most of the 
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recaptured fish were tagged and recaptured during the summer low flow period (i.e., 

August through mid-September), but one was recaptured on October 18 (i.e., after the 

onset of the fall high flow season). 

 

Salish sucker population structure 

Fish at Cave Creek were notably smaller than those captured at all other sites, with a 

median total length of 89 mm and no fish exceeding 127 mm (Table 7).  The 

Kolmogorov-Smirnov tests confirmed that Cave Creek was unique relative to the other 

sites in terms of the size of individuals in its Salish sucker population (Table 8).  The 

distribution of total lengths across the Cave Creek population was similar in shape to the 

other sites (Figure 7), but the size range distinguished Cave Creek from the other sites.   

The largest fish captured during the study were from the Maberry site, with 

several individuals exceeding 200 mm.  Maberry shows considerable overlap with the 

other sites in fish lengths below about 150 mm; above this level larger fish were 

represented more frequently in Maberry than the other sites (Figure 7).  These 

exceptionally large fish were outliers; nine fish were greater than 1.5 times the 

interquartile range (Figure 8).  Two sites actually had greater median lengths than 

Maberry despite the large specimens.  The Kolmogorov-Smirnov test did not distinguish 

the Maberry fish population from other sites based on total length; this is probably 

attributable to the overlap in size-class distribution with the smaller fish. 

With the exception of Cave Creek, total lengths could not separate the fish 

populations in this study by site.  In their length frequency histograms, most sites with 
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sufficient data suggest a normal distribution of fish across size classes (Figure 9).  The 

Maberry site is more ambiguous, with a considerable size gap between a normally 

distributed population of fish with a mode close to 120 mm, and fish larger than 180 mm.  

With the presence of similarly large individuals, Gordon’s Brook, Bertrand Creek, and 

Double Ditch are sites that could exhibit this same pattern, but low sample size precluded 

the analysis. 

 

Land use patterns 

The majority of the land within the Bertrand and Fishtrap Creek watersheds is 

agricultural land and rural residential properties outside the cities (Table 6). This 

designation accounts for 77% of the land area in the Bertrand Creek watershed and 75% 

of the Fishtrap Creek watershed.  Forests and urban areas comprise a smaller percentage 

of the land area of these watersheds, with Fishtrap Creek possessing almost three times 

the amount of urban land area at 16%, compared with 6% for Bertrand Creek.  Forests 

accounted for 9% or the watershed area in Fishtrap Creek and 17% of the watershed in 

Bertrand.  In both watersheds, the Canadian portions had a greater percentage of the total 

land area designated urban than did the portions in the United States; yet Canada also had 

a greater percentage of forests than the United States.  

Analysis of land use within individual sites showed dissimilar land use relative to 

their parent watersheds as a whole.  There was no urban land within the specified 100-

meter buffers at any of the study sites (Table 6).  For most of the individual sites, forested 

land was represented at much higher proportions relative to their parent watersheds.  
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Total land use was split between forests and agricultural, with four sites having majority 

agricultural land use and four sites having majority forest land.  Percentages varied 

widely between sites, with the Double Ditch buffer being 100% agricultural and the 

Bertrand Creek site buffer consisting of 82% forest. 

 

Discussion 

Hypoxia, hyperthermia, and changes in abundance 

Changes in temperature and dissolved oxygen between flow season in the coarse-scale 

analysis of watersheds and nations were readily apparent in this study.  These trends were 

also seen in some of the individual sites in the fine-scale analysis, but low sample size 

made it likely that this phenomenon, if it was present, would be undetectable with 

statistical tests in the remaining sites.  Where changes in dissolved oxygen and 

temperature were observed, the overall direction of these changes was expected, with 

higher stream temperatures and lower dissolved oxygen concentrations present during the 

low flow conditions of summer. 

There were no concurrent patterns in abundance as measured by CPUE related to 

flow period during the time frame that this study was undertaken.  This was true of the 

fine-scale within-site analyses, as well as the two coarse-scale analyses.  The correlation 

analysis also yielded no significant correlations between CPUE and dissolved oxygen or 

temperature.  In another study of Salish suckers, researchers similarly noted that there 

were no significant differences in CPUE rates from May through October at their study 

site (Pearson and Healey 2003).   
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There are several reasons why Salish sucker abundance may remain unchanged 

despite the observed seasonal fluctuations in dissolved oxygen and temperature, or if 

changes in abundance are actually occurring, why they may not have been detected in 

this study.  Despite dissolved oxygen concentrations that were lower and temperatures 

that were higher in the watersheds during the summer low flow conditions, these levels 

may be well within the range of tolerable environmental conditions for the Salish sucker.  

Many of the members of the Catostomidae family in North America are generally 

considered intolerant of pollution and habitat degradation, but there are many species in 

the family, some of which are quite tolerant of poor water quality (Grabarkiewicz and 

Davis 2008).  Exact, laboratory defined dissolved oxygen limits for the species are 

unavailable, but it has been suggested in previous literature that Salish suckers are fairly 

tolerant of mild hypoxia, with dissolved oxygen concentrations of 4 mg∙L-1 and above 

being suitable and levels of 2-4 mg∙L-1 inducing sub-lethal effects (DFO 2009).  One 

study estimated that concentrations below 3 mg∙L-1 would be considered lethal (Pearson 

2004).  Research on the closely related Longnose sucker has shown that dissolved oxygen 

levels of 5-6 mg∙L-1 are tolerable for the species (Edwards 1983).  There were only three 

sites in my study with mean dissolved oxygen concentrations that dropped below 5 mg∙L-

1.  These include the Aldergrove, Howe’s at 16th, and Salish Creek sites.  Salish suckers 

were captured at these sites on sampling dates during the summer when morning 

dissolved oxygen concentrations between 4 and 5 mg∙L-1 were observed.  The presence of 

these fish during times of low dissolved oxygen, coupled with the unchanged CPUE 

throughout the sampling season, suggests that for Salish suckers moderate hypoxia is not 
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immediately harmful to individuals in the juvenile and adult life stages that were the 

subject of this study. 

The higher temperatures observed during the low flow conditions of summer did 

not appear to limit Salish sucker abundance.   Stream temperatures exceeded 20°C at 

some of the sites during the summer afternoons.  During two periods of sampling at the 

Salish Creek site, temperatures were above 20°C during the afternoons and did not fall 

below 18°C the following mornings when the traps were retrieved.  Salish suckers were 

captured during these two times.  Temperature limits for the Salish sucker are unknown, 

but Longnose suckers prefer temperatures of 10-15°C (Edwards 1983).  In a previous 

study of Salish suckers, CPUE was highest during trapping periods when water 

temperatures were between 12 and 15°C (Pearson and Healey 2003).  If this threshold 

indicates optimal temperature conditions, then some of the higher temperatures in my 

study were sub-optimal but not immediately threatening to Salish sucker health and did 

not result in migration from the sites. 

My study failed to elucidate any evidence of migrations of Salish suckers between 

sites or identify sites where favorable conditions provided refuge during summer low 

flow period.  This study suggests that temperature and dissolved oxygen conditions that 

were non-lethal but sub-optimal existed during the summer, but that these conditions did 

not induce any large-scale movement in the fish.  With a tolerance for high existing 

temperatures and low dissolved oxygen conditions, the Salish suckers at these sites may 

not need extensive refuge habitat that requires movement between reaches to access. 
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A finer analysis of the individual study sites could reveal exploitable 

heterogeneity in the Salish sucker’s environment during the summer low flow period and 

give insight into how Salish suckers contend with hyperthermic and hypoxic conditions.  

Scale is important in assessing habitat and environmental variability and the opportunities 

or limitations imposed on a species by that habitat (Levin 1992, Diez and Pulliam 2007).  

Within a single stream reach there may be small-scale differences in the environment that 

offer refuge from disturbance (Lancaster and Belyea 1997).  In my study, two dissolved 

oxygen and temperature measurements at one fixed location were representative of the 

entire site for that trapping period.  For some of the sites, notably the same sites where 

Salish suckers were most abundant, the stream reaches were deep and wide, the flow 

velocities low, and the dissolved oxygen and temperature levels were presumably much 

more heterogeneous and dynamic than at stream riffles.  My sampling methods were too 

limited to gain a complete of the environmental heterogeneity that may be present in 

these sites.   

The exploitation of environmental heterogeneity within a confined habitat can 

allow fish to persist in marginal conditions.  For some species living in harsh 

environments, utilizing small-scale refuges is important to survival (Torgersen et al. 

1999).  In a hypoxic environment with thermal stratification, fish can move to cooler 

waters in order to reduce respiration (Rankin and Jensen 1993).  In intermittent stream 

pools, some fish are able to survive exposures to hypoxic conditions at night as long as 

there is a return to higher dissolved oxygen concentrations during the day (Labbe and 

Fausch 2000).  The deep pools preferred by Salish suckers can resemble lentic habitats in 
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their heterogeneous distribution of oxygen and temperature, especially during periods of 

intermittent flow when there is little mixing of water.  These habitats present a dynamic 

environment for fish that often face choices between mutually exclusive tolerable 

dissolved oxygen and temperature levels that vary considerably through time and space 

(Matthews and Berg 1997, Elliot 2000).   

For Salish suckers, other aspects of their physical habitat may be more important 

than optimal dissolved oxygen and temperature levels in habitat selection.  While my 

study did not show any patterns in abundance from flow period to flow period, suckers 

tended to favor deeper habitat.  A previous study reaffirms this pattern, and noted that the 

preference for deep pools, beaver ponds, and near stagnant stretches of stream grows 

stronger as the fish reach larger sizes (Pearson 2004).  Research on the topic of habitat 

selection in stream fishes suggests that larger fish face less predation risk from birds and 

mammals in deeper pools (Harvey and Stewart 1991).  Refuge habitat can lessen the 

exposure to a variety of hazards, both biotic and abiotic, and the threats posed by these 

hazards may change as the individual grows or as the environment fluctuates (Schlosser 

1985, Magoulick and Kobza 2003).  Seeking refuge from predation rather than hypoxia 

may be a more important survival strategy for suckers during the summer flow period 

when water levels are lower. 

Physical barriers in the stream may play a role in the inability of fish to move 

across habitats.  Previous telemetry studies show that adult Salish suckers have home 

ranges of a similar size to other stream fish species and are capable of moving across 

several hundred linear meters of stream channel if physical barriers to dispersal are not an 
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impediment (Pearson and Healey 2003).  Beaver dams were an obstacle in the same 

study, and suckers did not readily cross them.  At the Cave Creek site, a riffle above the 

large pool where the trapping site was located was nearly dry for most of the summer, 

preventing dispersal upstream during this time.  The property owners also indicated that a 

large beaver dam was present downstream from the site, making it likely that this 

population of Salish suckers was somewhat restricted in its movement.  The recapture of 

one individual during October sampling that was previously captured at the site during 

the summer suggests that there may be limited movement of fish at Cave Creek. 

Finally, it is also likely that low statistical power would make it difficult to 

confidently test for differences in abundance across flow season in the fine-scale analyses 

within study sites.  Each site was sampled up to five times during the low flow period and 

up to five times during the high flow period.  Unless the effect size is large, the power of 

a Kruskal-Wallis is probably low due to small sample size and the probability of 

committing a type II error is high.   

 

Population structure and fish movement 

The Maberry pond and Cave Creek sites stand out among all sites in their length 

frequency distributions.  Maberry pond appeared to contain fish of multiple age classes, 

some of which were very large individuals, and Cave Creek harbored juvenile fish 

exclusively.  At Maberry pond, the majority of fish I captured were centered on a mode 

of 120-130 mm total length.  At this size, most Salish suckers are in their second year of 

life and are just beginning to reach sexual maturity (Pearson and Healey 2003).  Fish in 
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the 160-189 mm range were absent from the site, while fish greater than 190 mm 

comprised approximately 20% of the Maberry site population.  The presence of these 

larger, sexually mature fish during the spring and summer spawning period is 

noteworthy, as there appears to be no suitable spawning substrate in the Maberry pond.  

These may be individuals that have been washed downstream and are unable to cross 

back over the dams on either side of the pond to reach suitable spawning grounds.  This 

site also contains an aerator, which may attract Salish suckers from nearby habitats, 

although the relative absence of suckers during the low flow period when hypoxia is 

more pronounced compared with the high flow period suggests that Salish suckers are not 

seeking refuge in this site during the summer. 

Conversely, the Cave Creek site is noteworthy because of the absence of large, 

sexually mature fish.  The largest individual was 127 mm long and most fish were much 

smaller; the mode was the size class of 80 to 89 mm fish, accounting for about 35% of 

the population.  In their study of Salish sucker life-history, Pearson and Healey noted that 

50% of the males were mature by 125 mm and 50% of females were mature by 135 mm 

(Pearson and Healey 2003).  Applying the above criteria to the Cave Creek population, it 

is possible that there were no sexually mature fish at this site.  This is an interesting 

finding because Cave Creek was the second deepest study site at 132 cm, and Salish 

sucker adults are more strongly associated with deep pool habitats than are juveniles 

(Pearson 2004).  This pattern of deep pool preference by larger stream-dwelling fish is 

well documented (Harvey and Stewart 1991).  That there were only juveniles captured at 
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this site throughout the field sampling season would seem to indicate that this habitat is 

inaccessible or otherwise untenable for adult Salish sucker when the sampling took place.   

For many lotic fish species, beaver ponds are an important habitat, acting as a 

population source from which individuals disperse during favorable conditions (Schlosser 

1998).  Ponds can provide ideal rearing habitat for juvenile fishes, in part by increasing 

productivity and invertebrate abundance (leading to increased fish growth rates) and 

providing refuge from high flows (Kemp et al. 2012).  The presence of these ponds in 

Cave Creek and the large numbers of juveniles found at the study site in this creek may 

indicate that this area is an important nursery habitat for Salish suckers.  The proximity of 

this Canadian site to the United States and the lower reaches of Bertrand Creek suggest 

that international cooperation is important in establishing conservation measures if fish 

are crossing the border when dispersing from source habitats. 

Beaver ponds can also act as barriers to dispersal during certain times of the year, 

with limited movement across dams by stream fishes followed by periods of migration 

(Schlosser 1995).  The land owner at the Cave Creek site indicated that there were beaver 

ponds downstream from the trapping site.  This may explain the pattern of abundant 

juvenile fish and the absence of adults in the Cave Creek site.  It seems likely that at 

some time period, this site must have been accessible to adults who spawned at the site or 

in the riffle just upstream.  The adults then moved downstream and their offspring were 

left behind to rear at the site.  These juvenile fish may be trapped at this site until high 

flows during the winter can breach the dams or rewater the seasonally dry portion of the 

creek upstream.  Trapping efforts focused on recapturing previously tagged juvenile fish 
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and elucidating their migration patterns might be most successful if timed during the 

winter or early spring to coincide with the highest flows. 

In their strong preference for deep pools and lentic habitats such as beaver ponds 

that are patchily distributed throughout the watershed, Salish sucker populations are 

likely to be naturally isolated to some extent.  For two of the sites in this study, suckers 

were present only once during the field sampling while the areas just upstream from these 

two sites included deep pools and ponds where Salish suckers were prolific.  Two suckers 

were captured in East Double Ditch Creek and one sucker was caught in the Bertrand 

Creek site.  Upstream from each of these sites were two areas of high sucker density; the 

ponds above the Gordon’s Brook site (upstream from Double Ditch Creek), and the Cave 

Creek site (upstream from the Bertrand site).  High concentrations of fish near stream 

reaches where fish are mostly absent is a documented phenomenon in fisheries biology; 

the linear nature of streams limits the scope of dispersal throughout the watershed and 

particular life history traits necessitate the use of specific habitat that may only occur in 

patches (Dunham and Rieman 1999, Koizumi 2011).  These conditions can segregate 

stream fish into sub-populations, something that may be occurring with Salish suckers in 

the Bertrand and Fishtrap Creek watersheds.   

For stream fish populations exhibiting this type of patchy distribution, dispersal 

and habitat connectivity are important to the persistence of the species (Schlosser 1991, 

Koizumi 2011, Poos and Jackson 2012).  Where habitat fragmentation has occurred or 

where barriers to dispersal exist, movement of individuals between sub-populations is 

curtailed which may leave stream fish vulnerable to extinction (Dunham and Rieman 
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1999).  Channelized sections of streams, devoid of the pools where suckers typically 

reside as well as riffles containing gravel for spawning, present such barriers to Salish 

suckers.  The watershed map clearly shows the legacy of channelization in the Fishtrap 

Creek watershed in the United States, which has affected several tributaries (Figure 1).  

The tributaries flowing south from Canada are constrained in roadside ditches for several 

kilometers upon entering the United States, and the natural channel morphology is not 

regained until these tributaries enter the Fishtrap Creek mainstem. 

East Double Ditch Creek, with its straightened channel relegated to a roadside 

drainage ditch for over 5 km, is one such tributary afflicted by channelization and loss of 

habitat.  The distance from the Gordon’s Brook ponds and other areas in Canada to the 

lower reaches of Fishtrap Creek in the United States where the natural sinuosity of the 

stream returns and pools are once again present, may be too great a distance to connect 

the locally abundant sucker populations in the Fishtrap Creek headwaters to the lower 

reaches.  State biologists have noted the absence of Salish sucker in much of the southern 

portion of the Fishtrap Creek watershed (Robert Vadas, WDFW, 

robert.vadas@dfw.wa.gov, pers. comm.).  The barrier that these homogeneous glides 

create for potential dispersers may hinder Salish sucker persistence in the lower Fishtrap 

Creek watershed. 

 

Land use patterns 

Although the area is seeing rapid residential development, the Fishtrap and Bertrand 

Creek watersheds are still dominated by agricultural land (Figure 10).  Land use patterns 
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are generally similar on either side of the border.  Agricultural land remains prevalent, 

urban land is a smaller percentage but is growing, and forested land remains in pockets 

throughout the watersheds, especially in parks and riparian buffers adjacent to 

agricultural land.  These patterns of land use within the study watersheds have important 

implications for riparian habitat integrity and for Salish sucker conservation. 

Agricultural land does not provide the same ecological utility as a natural, 

forested landscape, but it does not alter the natural ecosystem processes to the same 

extent as urban land.  The deleterious effects of agricultural land use on stream health are 

generally less severe and easier to mitigate for than for urban land use (Wasson et al. 

2010, Violin et al. 2011, Herringshaw et al. 2011).  Even in watersheds where agriculture 

is extensive, changes in the fish communities and indices of biotic integrity may be slight, 

especially where riparian buffers exist (Stauffer et al. 2000, Greenwood et al. 2012).  In 

one study, changes to the fish communities within streams were apparent only after at 

least 50% of the watershed had been converted to agriculture (Wang et al. 1997).  

Contrasting this with the impact of urban land on streams, some studies have shown that 

deleterious effects to stream health due to urban land use are manifested at a far lower 

threshold than agriculture (Stepenuck et al. 2002, Wang and Kanehl 2003).  Urban land 

and the accompanying impervious surfaces are expected to grow in the Bertrand and 

Fishtrap Creek watersheds, though they are not currently near the levels of percent 

agricultural land use.  An emphasis on strategic growth may help mitigate the impacts of 

future land use conversion. 
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The scale and location of disturbance and land use, rather than a simple measure 

of overall land use percentage of a watershed, is an important consideration in assessing 

the potential for riparian habitat degradation (Roth et al. 1996, Stauffer et al. 2000).  

Some of the evidence suggests that in watersheds dominated by agriculture, the near-

stream land use is more important than basin-wide land use in determining the fish 

species assemblage, due to the influence of the riparian corridor on in-stream habitat 

(Karr and Schlosser 1978, Meador and Goldstein 2003, Teels et al. 2006).  A naturally 

vegetated riparian corridor can help trap sediment runoff from the adjacent land, 

contribute to channel sinuosity and roughness, and reduce scouring of the stream channel; 

these functions help to maintain habitat diversity and the diversity of fish assemblages in 

turn (Karr and Schlosser 1978).  At every site except for Double Ditch, the percent of 

forest land in the riparian zone was higher than that of the watershed as a whole.  This 

pattern is present in much of the Bertrand and Fishtrap Creek watersheds; even in cases 

where the waterways flow through agricultural fields, there remains forested riparian 

corridors in many reaches where more natural stream processes can occur.  This provides 

some hope in addressing habitat preservation for Salish sucker conservation. 

In both watersheds, on either side of the border, stream restoration efforts 

including riparian plantings and large woody debris installments have taken place on 

some of these agricultural lands.  The Nooksack Salmon Enhancement Association, the 

Bertrand Creek Enhancement Society, and the USDA Conservation Reserve 

Enhancement Program all have undertaken stream enhancement projects with the goal of 

restoring riparian ecosystem integrity and improving fish habit.  Even though the 
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quantifiable results of such activities are under some debate -- how much of a return to a 

more natural stream ecosystem can be expected with a given effort? -- the utility of 

restoration projects in improving fish habitat on agricultural lands is well supported and 

such measures should continue in the future as part of a Salish sucker recovery strategy. 

 

Conclusions 

Contrary to expectations, Salish sucker abundance did not change between summer low 

flow period and the spring/fall high flow period.  This was despite the fact that lower 

dissolved oxygen concentrations and higher temperatures were present during the 

summer.  This phenomenon was less apparent in the site level analysis but more 

conspicuous with the pooled data of the two coarse-scale analyses examining temperature 

and dissolved oxygen at the levels of watershed and country.  Of all the physical habitat 

characteristics measured in this study, average site depth was the factor most strongly 

correlated with Salish sucker abundance. 

Hyperthermia and hypoxia at levels that would be lethal to Salish suckers during 

the adult and juvenile stages did not appear to be persistent or widespread throughout the 

sites I visited.  Salish suckers were still present at the sites with the lowest dissolved 

oxygen concentrations and highest temperature readings during summer low flow period 

when water quality should have been most stressful. 

With the importance of habitat considered, conservation efforts to recover the 

Salish sucker should focus on maintaining habitat diversity.  Though a relatively small 

percentage of the two watersheds remain undeveloped, there is some promise in the 
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utility of riparian buffers for the maintenance of physical habitat, as well as water quality, 

in watersheds where agriculture and rural land use is extensive.  In contrast to the paved 

landscapes in an urban environment, an agricultural landscape is more easily manipulated 

back into a natural state conducive to maintaining habitat diversity and complexity, 

through restoration efforts such as revegetation and the installment of large woody debris. 

Conservation actions that support habitat integrity and connectivity at the larger 

scale are important in preserving the Salish sucker.  With its preference for large pool 

habitats that are patchily distributed throughout the landscape and an obligatory habitat 

shift to riffles during the spawning season, a strategy that minimizes habitat 

fragmentation and dispersal barriers is important in developing Salish sucker 

conservation measures. 

A greater understanding of Salish sucker life history and ecology will prove 

helpful in developing successful conservation plans for the species.  Examining patterns 

of dispersal from possible source habitats such as Cave Creek, investigating the 

movements of Salish suckers throughout the watersheds and the extent to which habitat 

degradation creates barriers to dispersal, and the identification of source habitats in the 

watersheds should all be considered as future research objectives.  
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Appendix 

 

 

Table 1.  Average monthly discharge and temperature, representing the four-year average 
from 2007 to 2010.  Data provided by USGS gauging stations, located at Front Street in 
Lynden (Fishtrap Creek) and the international border (Bertrand Creek).  Fishtrap Creek 
temperature data not available for January. 
 

  
Discharge 

(feet3/second) Temperature (°C) 

  January July January July 

Bertrand Creek 109 1.7 3.9 17.2 
Fishtrap Creek 185 15 -- 15.9 
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      Table 2.  Physical habitat characteristics of each site. 
 

Site Country Watershed 

mean 
bankfull 
width 
(m) 

mean 
gradient 

(%) 

mean 
depth 

(m) 

canopy 
cover 

(%) 

Aldergrove Canada Bertrand 5.3 <1 0.29 61.4 
Cave Canada Bertrand 8.5 <1 0.53 22.3 

Gordon's Brook Canada Fishtrap 6.5 <1 0.32 0 

Howe's Canada Bertrand 3.2 <1 0.14 55.6 
Salish Canada Fishtrap 4.8 <1 0.44 9.4 

Bertrand USA Bertrand 9.1 2 0.30 32.6 

Double Ditch USA Fishtrap 2.7 <1 0.22 0 
Maberry USA Bertrand 17.3 <1 0.42 47.4 
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     Table 3.  Kruskal-Wallis test results, testing for within watershed and within site differences between flow periods.  
 

  
Dissolved oxygen 

(mg·L ¹̄) Temperature (°C)   CPUE 

 
H 

statistic 
p-

value 
H 

statistic 
p-

value 
H 

statistic 
p-

value 

Bertrand watershed 5.27 0.022 19.85 <0.001 0.23 0.628 

Fishtrap watershed 9.95 0.002 13.28 <0.001 0.51 0.476 
United States 4.77 0.029 18.02 <0.001 0 1 

Canada 12.73 <0.001 18.12 <0.001 1.74 0.188 

Maberry 2.08 0.149 4.50 0.034 0.09 0.767 
Bertrand 6.00 0.014 6.00 0.014 0.80 0.371 

Cave 1.13 0.289 1.13 0.289 0.76 0.384 

Howe's 1.33 0.248 5.33 0.021 0.11 0.741 
Aldergrove 0.24 0.624 1.50 0.221 0.06 0.803 

Double Ditch 2.46 0.117 5.77 0.016 1.00 0.317 

Gordon's Brook 4.50 0.034 4.50 0.034 1.16 0.282 
Salish 5.33 0.021 5.33 0.021 1.03 0.309 
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Table 4.  Correlation analysis between median Salish sucker CPUE (fish/m3/hr) for each 
site (n=8) and various habitat characteristics. 
 

Habitat characteristic 

Correlation 
coefficient 

(Kendall's τ) 
p-

value 

mean depth (cm) 0.92 0.002 

mean summer DO (mg·Lˉ¹) -0.27 0.373 
mean summer temperature (°C) 0.19 0.524 

canopy cover (%) 0 < 1 

riparian vegetation coverage (%) 0.11 0.702 
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Table 5. Number of Salish suckers PIT tagged and the number recaptured, organized by 
site. 
 

site 
PIT tagged 

fish recaptures 
Cave* 33 8 
Howe’s** 1 2 
Gordon's Brook 3 0 
Double Ditch 2 0 
Bertrand 1 0 

* There were 9 incidences of recapture but only 8 individuals involved; 1 sucker was recaptured twice. 
**An unknown number of suckers had been tagged during another project at this site.  Our study marked 1 
individual and recaptured 2 individuals from the other project. 
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Table 6.  Land use percentages for watersheds, watershed portions within each country, 
and site specific buffer zones for the area of influence of each study site. 
 

  Land use percentage 

  Urban Forest Agriculture/Other 

Bertrand  6 17 77 
Bertrand United States 3 14 83 

Bertrand Canada 8 20 72 

Fishtrap  16 9 75 
Fishtrap United States 12 4 84 

Fishtrap Canada 18 13 69 

Maberry 0 67 33 
Bertrand 0 82 18 

Cave 0 65 35 

Howe's 0 23 77 
Aldergrove 0 37 63 

Double Ditch 0 0 100 

Gordon's Brook 0 61 39 
Salish 0 17 83 
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Table 7.  Salish sucker total length statistics in millimeters.  Values were rounded to the 
nearest millimeter.  The Gordon’s Brook, Bertrand, and Double Ditch sites were omitted 
due to small sample sizes. 
 

site median IQ range maximum minimum 

Maberry 130 124-154 261 96 

Cave 89 84-100 127 60 
Howe's 123 114-138 177 61 

Aldergrove 125 116-142 183 106 

Gordon's Brook 192 164-213 226 135 
Salish 147 134-158 174 91 
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Table 8.  Results from the Kolmogorov-Smirnov tests examining similarity in population 
structure between sites.  Asterisks represent significant differences in populations based 
on total lengths.  
 

site comparisons 
D 

statistic p-value 

Maberry/Cave* 0.871 <0.001 

Maberry/Howe's 0.313 0.328 
Maberry/Aldergrove 0.303 0.071 

Maberry/Salish 0.308 0.090 

Cave/Howe's* 0.682 <0.001 
Cave/Aldergrove* 0.833 <0.001 

Cave/Salish* 0.868 <0.001 

Howe's/Aldergrove 0.181 0.958 
Howe's/Salish 0.510 0.042 

Aldergrove/Salish 0.412 0.026 
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Figure 1.  Map showing the Fishtrap Creek and Bertrand Creek watersheds with the 
locations and names of the study sites. 
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Figure 2.  Boxplots of site dissolved oxygen across flow period.  Sites with significant 
differences are marked with an asterisk (p < 0.05). 
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Figure 3.  Boxplots of site temperature across flow period.  Sites with significant 
differences are marked with an asterisk (p < 0.05).   
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Figure 4.  Boxplots of temperature and dissolved oxygen across flow period in each 
watershed and each country. 
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Figure 5.  Boxplots for catch per unit effort (CPUE) across flow period in each watershed, country, and site.  Double Ditch and 
Bertrand were omitted due to small sample size.  None of the figures represent significant differences between flow levels as 
determined by the Kruskal-Wallis tests (p < 0.05).  
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Figure 6. Scatterplot showing the correlation between depth and CPUE. 
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Figure 7.  Cumulative proportion of Salish sucker total lengths by site.  The Gordon’s 
Brook, Bertrand, and Double Ditch sites were omitted due to small sample sizes. 
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Figure 8.  Boxplots of Salish sucker total length statistics for each site.  The Gordon’s 
Brook, Bertrand, and Double Ditch sites were omitted due to small sample sizes. 
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Figure 9.  Length frequency histograms of Salish sucker total lengths, expressed in 10 
mm intervals.  The Bertrand and Double Ditch sites were omitted due to small sample 
size.   
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      Figure 10.  Land use map of the Bertrand and Fishtrap Creek watersheds. 
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