May 1st, 10:30 AM - 12:00 PM

Salmonid early response to restored freshwater floodplain

Erin Morgan
Wetland Ecosystem Team, emorgan2@uw.edu

Jeff Cordell
University of Washington

Lauren Rich
Upper Skagit Indian Tribe of Washington

Follow this and additional works at: https://cedar.wwu.edu/ssec

Part of the [Terrestrial and Aquatic Ecology Commons](https://cedar.wwu.edu/ssec)

Morgan, Erin; Cordell, Jeff; and Rich, Lauren, "Salmonid early response to restored freshwater floodplain" (2014). *Salish Sea Ecosystem Conference*. 141.
Salmonid Early Response to a Restored Freshwater Floodplain
GOAL: Reconnect wetland & floodplain to enhance salmonid spawning/rearing & increase production

How do off-channel habitats benefit salmon?

Denser prey resources = enhanced growth

Questions & Criteria

FOCUS: Evaluate function of main channel, wetland, and floodplain habitats w.r.t. rearing & foraging

1.) Evaluate prey resources
 (capacity to support production)
 - What is the quantity/composition across habitats?

2.) Evaluate fish density
 (opportunity to access capacity)
 - Can fish access restored capacity?
 - Is fish density related to prey resource availability?

3.) Evaluate diet composition & fish condition
 (realized function)
 - Is there a measurable physiological benefit (increased fitness) in any habitat?
Criteria 1: Prey resources

All reaches are similar in prey density and composition.
Criteria 2: Coho Density/ Abundance

Coho densities follow expected patterns across the project.

Coho can access floodplain & wetland capacity.
Criteria 3: Diet Composition/Fitness

Flies (Diptera), especially midge larvae, are dominant diet item.

Diet assemblage generally matches drift.

IR similar across sites/habitats.

No evidence of prey subsidy in off-channel habitats.
Discussion

How is the restoration doing?

Hansen Creek vs. Other Studies

Capacity: Prey resources are similar across all sites

- *Channel drift:* avg. ~ 6x denser (Wipfli and Gregovich 2002)
- *Floodplain abundance:* ~30x higher (pilot)

Opportunity: Coho are using habitats as expected across the site

- *Coho density:* avg. ~ 6-10x denser (pools, summer) (Nielsen 1992)

Realized Function: Diet composition as expected, no IR differences.

- *Diet composition:* dominated by midges, which other studies agree is most important diet item for coho fry (Higgs et al. 1995)
- *IR:* No difference between sites vs. significantly higher IR in FP
Conclusions & Recommendations

• Reference and restored sites are biologically similar after only 3 years.

• Prey resources may not be limiting coho salmon production.

• Floodplain habitat may still serve other important functions for salmon.

Where do we go from here?

• Changes in vegetation & hydrology will be ongoing...

• Monitor again in 5-10 years
Acknowledgments

Wetland Ecosystem Team
- Jeff Cordell
- Jason Toft
- Elizabeth Armbrust
- Michael Caputo
- Aaron David
- Emily Howe
- Brittany Jones
- Maria Karm
- Claire Levy
- Stuart Munsch
- Bob Oxborrow
- Alyssa Suzumura

USIT
- Lauren Rich
- Lisa Hainey
- Josh Adams
- Mike Bartlett
- Danielle Raposa

Skagit Co. Public Works Dept
- Emily Derenne
- Jeff McGowan

Volunteers
- Katie Dowell
- Andrew Annanie

UW School of Aquatic & Fishery Sciences
- Katherine Armintrout
- Kristin Connelly
- Ava Fuller

Funding
Provided by the Upper Skagit Indian Tribe, through EPA’s Puget Sound Tribal Capacity Program grant
References

• Cloe, WW and GC Garman. 1996. The energetic importance of terrestrial arthropod inputs to three warm-water streams. *Freshwater Biology* 36: 105-114.

