May 1st, 1:30 PM - 3:00 PM

The Lake Washington PCB/PBDE Study: Estimates of loading from major pathways

Curtis DeGasperi
King County (Wash.). Water and Land Resources Division, curtis.degasperi@kingcounty.gov

Jenee Colton
King County (Wash.). Water and Land Resources Division

Richard Jack
King County (Wash.). Water and Land Resources Division

Follow this and additional works at: https://cedar.wwu.edu/ssec

Part of the [Terrestrial and Aquatic Ecology Commons](https://cedar.wwu.edu/ssec)

This Event is brought to you for free and open access by the Conferences and Events at Western CEDAR. It has been accepted for inclusion in Salish Sea Ecosystem Conference by an authorized administrator of Western CEDAR. For more information, please contact westerncedar@wwu.edu.
Lake Washington PCB/PBDE Study
Estimates of loading from major pathways

Curtis DeGasperi, Jenée Colton, and Richard Jack
Science Section
King County Water and Land Resources Division, Department of Natural Resources and Parks

2014 Salish Sea Ecosystem Conference
May 1, 2014
Conceptual Model for PCBs

PCB SOURCES
- Global Atmospheric Sources
- Local Atmospheric Sources
- Domestic and Industrial Waste Sources
- Watershed Sources: industrial facilities, military facilities, electrical facilities, building caulks, paints, and sealants

PCB PATHWAYS
- Direct Atmospheric Deposition
- Combined Sewer Overflows
- Watershed Drainage: Rivers, Creeks, Stormdrains

LAKE WASHINGTON FATE PROCESSES
- Water: Volatilization, Wash out, Degradation, Deposition, Resuspension
 - Air-Water Interface
 - Water-Sediment Interface
- Active Sediment: Biofouling and mixing, Deposition, Resuspension, Burial, Degradation

BIOACCUMULATION LINKAGES
- Sport Fish (eat prey fish and/or benthos)
- Prey Fish (eat benthos and plankton)
- Benthos (live in sediment)
 - Fish Eating Animals
 - Mammals
 - Birds
 - Humans
Major Pathways

- Rivers (Cedar and Sammamish)
- Local Drainages
 - Monitored tributaries
 - Thornton Creek
 - Juanita Creek
 - May Creek
 - Remaining unmonitored lake drainage
- CSOs
- Floating bridges (stormwater runoff)
- Direct atmospheric deposition
Loadings Estimates

Concentration \times Flow = Loading

Field study mean concentration used, except

- Extrapolation approach for unmonitored tributaries
- Enhanced CSO data with historical data

Flow

- Gauged flow data OR
- Estimated
Correlations with Land Use/Population

- %Total Impervious Cover
- %Developed pre-1979
- Population Density (#/ac)
- %Commercial/Industrial Dev pre-1979
Relationship with Historical Land Use?

![Map showing relationship between historical land use and PCB yield](image)

- PCB Yield (g km\(^{-2}\) yr\(^{-1}\)):
 - 0.0
 - 0.5
 - 1.0
 - 1.5
 - 2.0
 - 2.5
 - 3.0

- % Commercial/Industrial Development:
 - 0
 - 2
 - 4
 - 6
 - 8
 - 10
 - 12

Legend:
- Percent Commercial Pre-1979
 - < 4
 - 4 - 8
 - 8 - 16

Insert graph showing:
- % Commercial/Industrial Development vs. PCB Yield
- Highlighted areas with different colors indicating percent commercial/industrial development
- Bars for: Thornton, Juanita, May
Current PCB Loading Estimates

- 672 g yr⁻¹ to Lake Washington
- 140 g yr⁻¹ exits Lake Washington
- 360 g yr⁻¹ to Puget Sound
PCB Loading Summary

Lake Washington

- Bridges: 3 g
- CSOs: 12 g
- Rivers: 97 g
- Local Dr.: 450 g

Lake Union/Ship Canal

- Bridges: 1 g
- CSOs: 58 g
- Local Dr.: 40 g

Puget Sound

- Total: 360 g
Current PBDE Loading Estimates

- 2,023 g yr\(^{-1}\) to Lake Washington
- 968 g yr\(^{-1}\) exits Lake Washington
- 990 g yr\(^{-1}\) to Puget Sound

tPBDE load (g yr\(^{-1}\))

- **Atmospheric Deposition**: 590 (29.2%)
- **Highway Bridges**: 19 (0.9%)
- **CSOs**: 14 (0.7%)
- **Local Drainage**: 820 (40.5%)
- **Rivers**: 580 (28.7%)
Load from Local Drainage Driven by Stormwater

- Stormwater is <30% of annual flow in streams BUT
- Accounts for 80-90% of annual PCB load from local drainage
Loadings Conclusions

- Appears to be relationship between local tributary PCB areal loading and age and/or type of development
- As much as 70% of lake PCB load comes from local tributaries
- As much as 80% of local tributary PCB load delivered in stormwater
- Lake Washington is a sink for PCB and PBDE
Search: lake washington pcb study