May 1st, 1:30 PM - 3:00 PM

The derivation and utility of a hydrologic condition index for assessing land use effects and regulations

Gino Lucchetti
King County, Gino.Lucchetti@kingcounty.gov

Jeff Burkey
King County (Wash.)

Follow this and additional works at: https://cedar.wwu.edu/ssec
Part of the Terrestrial and Aquatic Ecology Commons

Lucchetti, Gino and Burkey, Jeff, "The derivation and utility of a hydrologic condition index for assessing land use effects and regulations" (2014). Salish Sea Ecosystem Conference. 216.

This Event is brought to you for free and open access by the Conferences and Events at Western CEDAR. It has been accepted for inclusion in Salish Sea Ecosystem Conference by an authorized administrator of Western CEDAR. For more information, please contact westerncedar@wwu.edu.
Development and utility of a Hydrologic Condition Index

by

Gino Lucchetti and Jeff Burkey
King County Dept. Natural Resources and Parks
Seattle, WA

Salish Sea Conference, Seattle, May, 2014
Regulatory Effectiveness (aka “The CAO”) Study

Selection Criteria:

- Puget Lowland Ecoregion - common geology (mostly till), morphology and climate.
- Small headwater watersheds (60 to 1260 ha) w/ fish-bearing channels, no lakes, minimal wetlands
- Single jurisdiction and set of regulations
- Treatment basins: ongoing development with high potential for more
- Reference – forested, no development
A slight problem along the way…
...building permits declined 75%
Land Cover Scenarios
(putting the present in perspective)

• Past (~1900 to 2007)

• Present (2007 – 2102)

• Future - Full Build-out “worst case”

• Urban – 2007 Juanita Creek
The Past - Data Timeline*

1907-08 1911
Eastern and Control

Vashon

1936 1948 1965
Vashon and Control

All Basins

Timber
Soil Survey
Aerials

Land Cover
30 m pixels

Tahlequah –
Full Build-Out
An Urban Comparison - Juanita Creek

Orthophoto

Impervious cover
To compare scenarios quantify the effect of land cover change (not just the change)

Hydrology the primary driver for response

“Flashiness” most strongly correlated with Biology (DeGasperi et al 2009), so.....
High Pulse Counts*

Pre-development

* From Horner 2013

Post-development

* From Horner 2013
High Pulse Counts*
Effect of geology and land cover

* Modeled 61-year averages for pre-existing watershed models used to model the HCI
CAUTION

SPATIALLY

EXPLICIT CONTENT
Study Basin
Setting Up the Study Area

Grid cell (1.8 m)

monitoring point
Calculation of Grid Cell Distances

- Monitoring point
- Grid cell
- d_{Og}
- d_{Sg}
Surficial Geology

Study Basin

Monitoring point

dOg
dSg

Grid cell

Grid cell (1.8 m)

Low vs. High Permeability

till
outwash
Factoring in Landcover

- Monitoring point
- Grid cell
- Landcover
- Till
- Outwash
- Grid cell (1.8 m)
Calculating the Hydrologic Condition Index...Step 1

\[HCVs = \sum_{g=1}^{n} HPC_g \left(\frac{1}{dO_g + dS_g} \right) \]
Calculating the Hydrologic Condition Index...Step 2

\[HCl_s = \frac{HCV_s}{HCV_s_{\text{worst}}} \]
CALCULATION OF THE HYDROLOGIC CONDITION INDEX

\[HCl_s = \frac{HCV_s}{HCVs_{\text{worst}}} \]

\[HCV_s = \sum_{g=1}^{n} HPCg \left(\frac{1}{dO_g + dS_g} \right) \]

- \(HCl_s \) is the hydrological condition index for a stream site in a watershed, \(s \), given the LULC pattern for a particular year or simulated level of development.
- \(HCV_s \) is the hydrological condition value for a stream site in a watershed, \(s \), given the LULC pattern for a particular year or simulated level of development.
- \(g \) is an index from 1 to \(n \) for all the grid cells within a watershed.
- \(HPCg \) is an average high pulse count value for each grid cell type, \(g \). There are 24 values for HPC based on the combination of 12 LULC types and 2 underlying geology types.
- \(dO_g \) is overland distance (Euclidean) from the grid cell, \(g \), to the stream channel.
- \(dS_g \) is stream channel distance measured from the intersection of the overland distance to the grid cell, \(g \), to the sampling point downstream.
Accuracy and utility

Watershed hydrologic models:

• Fair ($r^2 \geq 0.6$) to excellent ($r^2 \geq 0.9$) simulating hourly flow rates and HPCs,

• used for other major assessments (e.g., WRIA 9 Stormwater Retrofit Planning)

• BAS
<table>
<thead>
<tr>
<th>Project timeframe averages for six treatment watersheds</th>
<th>Average Watershed HCl</th>
<th>Average Regulatory Stream Buffer HCl</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>r</td>
<td>p-value</td>
</tr>
<tr>
<td>Watershed Percent Impervious</td>
<td>0.94</td>
<td><0.01</td>
</tr>
<tr>
<td>Watershed Percent Forest</td>
<td>-0.91</td>
<td><0.01</td>
</tr>
<tr>
<td>Average Watershed HCl</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Average Regulatory Stream Buffer HCl</td>
<td>0.71</td>
<td>0.06</td>
</tr>
<tr>
<td>Ratio of watershed and buffer HCIs</td>
<td>0.05</td>
<td>0.46</td>
</tr>
<tr>
<td>High Pulse Count</td>
<td>0.88</td>
<td>0.01</td>
</tr>
<tr>
<td>Average Annual Temp at Baseflow</td>
<td>0.20</td>
<td>0.36</td>
</tr>
<tr>
<td>Conductivity at Baseflow</td>
<td>0.08</td>
<td>0.44</td>
</tr>
<tr>
<td>Percent Pool Length of Thalweg</td>
<td>0.44</td>
<td>0.19</td>
</tr>
<tr>
<td>CV of Thalweg Depth</td>
<td>-0.44</td>
<td>0.19</td>
</tr>
<tr>
<td>Average Velocity at MAD</td>
<td>0.36</td>
<td>0.24</td>
</tr>
<tr>
<td>Average Residual Pool Depth</td>
<td>0.08</td>
<td>0.44</td>
</tr>
<tr>
<td>Large Wood per 100m</td>
<td>0.64</td>
<td>0.09</td>
</tr>
<tr>
<td>Percent Silt and Sand</td>
<td>-0.36</td>
<td>0.24</td>
</tr>
<tr>
<td>BIBI</td>
<td>0.42</td>
<td>0.21</td>
</tr>
<tr>
<td>X7DADMax</td>
<td>0.94</td>
<td><0.01</td>
</tr>
</tbody>
</table>
Putting it all together
Hydrologic condition over time

- All Paved Road
- Equal forest/grass
- All forest

Legend:
- Paved Road
- Unpaved Road
- Open Water
- Pavement
- Building
- Bare
- Grass
- Recent Thinning
- Wetland
- Pasture
- Shrub
- Forest/Trees
Hydrologic condition over time

- 1.00
- Equal forest/grass
- All forest

Paved Road

Unpaved Road

Open Water

Pavement

Building

Bare

Grass

Recent Thinning

Wetland

Pasture

Shrub

Forest/Trees

Past Present
Hydrologic condition over time

Judd Creek

Past Present BuildOut

Equal forest/grass

All forest

HCl

0.30
0.25
0.20
0.15
0.10
0.05
0.00

Paved Road
Unpaved Road
Open Water
Pavement
Building
Bare
Grass
Recent Thinning
Wetland
Pasture
Shrub
Forest/Trees
Hydrologic condition over time

Judd Creek

HCl

Equal forest/grass

All forest

- Paved Road
- Unpaved Road
- Open Water
- Pavement
- Building
- Bare
- Grass
- Recent Thinning
- Wetland
- Pasture
- Shrub
- Forest/Trees

Past

1910 1936 1948 1965

Present

2007 2009 2010 2012 BuildOut
Hydrologic condition over time

Judd Creek

Past Present

HCI

Equal forest/grass
All forest

- Paved Road
- Unpaved Road
- Open Water
- Pavement
- Building
- Bare
- Grass
- Recent Thinning
- Wetland
- Pasture
- Shrub
- Forest/Trees
Hydrologic condition over time

Judd Creek

“Worst Case”

Equal forest/grass
All forest

Paved Road
Unpaved Road
Open Water
Pavement
Building
Bare
Grass
Recent Thinning
Wetland
Pasture
Shrub
Forest/Trees
1.2Xs = largest change 2012 and FBO
3.9Xs > Taylor Creek at FBO

1.2Xs = largest change between 2012 and FBO
HCI =

- Watershed condition measuring stick
- Effect of distance, land covers and geology (configuration)
- Improved precision in X-axis
- No need to build hydrologic models everywhere in Puget Lowland Ecoregion
End
Context:

Critical Areas Ordinance required use of Best Available Science.

We used it. It survived appeals.

But, was it sufficient?
Issue:

New regulations needed assessment.

Little information… no certainty

Wanted to know:

Will new regulations be sufficient?

If not, why?

And, what would change?
Measuring Environmental Response

Hydrology – High Pulse Counts

Biology

Macro-invertebrates
BIBI

Water Quality

Conductivity, Temperature

Channel Complexity

Reach-Averaged Velocity (salt tracers)
EMAP – substrate, thalweg, pools, LWD
Change in % Forest Cover - 1907-11 to 2007*

Mainland Watersheds

- Weiss
- Cherry
- Taylor

Island Watersheds

- Tahlequah
- Judd
- Fisher

Control Watersheds (mainland only)

- Webster
- East Seidel
- South Seidel

*Michalak et al. 2013
Estimating
the
Future
Condition
accounting for land cover, geology and distance
Acknowledgements: 11 groups – over 60 people!

Funders: USEPA & King County

Tech Collaborators: EPA (Jayshika Ramrakha, Tony Fournier, Gretchen Hayslip, Krista Mendelman, Mike Rylko, John Gabrielson), UW UERL (Marina Alberti, Julia Michalak), USGS (Christian Torgersen, Rich Sheibley, Andrew Gendaszek, Bob Black),

Assistance: WDOE (Stephen Stanley) VCC, GRCC GIS Lab, KC Interns

KC Project Team:

DNRP – Gino Lucchetti (Project Manager), Josh Latterell, Ray Timm, Leska Fore, Jennifer Vanderhoof, Jeff Burkey, Dan Smith (gaging), Dan Smith (database), Charlie Zhen, David Funke, Stephanie Hess, Jo Wilhelm, Chris Gregersen, Chris Knutson, Ken Rauscher, Bob Fuerstenberg (ret.), Klaus Richter (ret.)

DDES - Harry Reinert, Paul McCombs, Jon Petersen, Steve Bottheim, Betsy MacWhinney, Pesha Klein