
Nicole Burnett
Padilla Bay NERR, nburnett@padillabay.gov

Follow this and additional works at: https://cedar.wwu.edu/ssec
Part of the Terrestrial and Aquatic Ecology Commons
Zooplankton Monitoring in the Eelgrass Dominated Padilla Bay: A Baseline for Examining Future Changes

Nicole Burnett
Padilla Bay National Estuarine Research Reserve
Padilla Bay

- Approx. 8000 acre eelgrass bed
 - 1 of the largest contiguous eelgrass beds in North America
 - *Zostera marina* and *japonica*
- Shallow bay
 - 12 ft tidal range
 - Most of the bay is exposed at low tide
Zooplankton Monitoring

- Limited previous zooplankton work in Padilla Bay
- Compliments long term water quality and nutrient monitoring
- Serve as baseline

- Started mid 2007
- Once a month at 3 sites
- 153 µm mesh
- Identified to broad categories
• COPEPODite
 – Interactive Time-series Explorer module of the COPEPOD global plankton database project

• Online plankton time-series visualization toolkit
• Plankton, water quality and nutrient data
Total Zooplankton

- Ploeg
- Bayview
- Gong

Total Zooplankton per m³

0 10k 20k 30k 40k 50k 60k 70k 80k 150.0k
Data Analysis

- COPEPODite
Total Zooplankton

Ploeg

Bayview

Gong
Plankton ID Categories

- Copepods
- Crabs
- Barnacles
- Other Arthropods
- Annelids
- Gelatinous
- Mollusks
- Larvaceans
- Echinoderms
- Chaetognaths
- Unknown
Dominant Plankton Categories

- Annelids
- Copepods
- Larvaceans

Graph showing the dominance of these categories over the years 2008 to 2013 at different locations.
Annelid

Yearly Anomalies

- Ploeg
- Bayview
- Gong

Season Anomalies

- Jan + Feb + Mar
- Apr + May + Jun
- Jul + Aug + Sep
- Oct + Nov + Dec
Barnacles

- Ploeg
- Bayview
- Gong

Seasonal Anomaly

- Jan + Feb + Mar
- Apr + May + Jun
- Jul + Aug + Sep
- Oct + Nov + Dec
Crab Larvae
Data Analysis

- COPEPODite

![Diagram](image)
Zooplankton Relationships

| SST | Total Zoo | Annelid | Crab Larvae | Barnacle Larvae | Copepod + Nauplii | Other Arthro | Chaetognatha | Larvaceans | Hydrozoans | Ctenophores | Unk Gel Zoo | Echinoderms | Mollusca | Other unkn | Chla | PO4 | NH4 | NO2 | NO3 | NO23 | temp at depth | sal | DO | pH | Turbidity | Hadley Sal | SAT Chl | Sur Winds |
|-----|-----------|---------|-------------|----------------|-------------------|--------------|--------------|-------------|------------|-------------|-------------|-------------|-----------|---------|-----------|-----|-----|-----|------|-----|------|-------------|-----|-----|-----|-----------|-----------|--------|----------|
| SST | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| Total Zoo | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| Annelid | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| Crab Larvae | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| Barnacle Larvae | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| Copepod + Nauplii | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| Other Arthro | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| Chaetognatha | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| Larvaceans | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| Hydrozoans | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| Ctenophores | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| Unk Gel Zoo | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| Echinoderms | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| Mollusca | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| Other unkn | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| Chla | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| PO4 | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| NH4 | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| NO2 | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| NO3 | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| NO23 | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| temp at depth | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| sal | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| DO | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| pH | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| Turbidity | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| Hadley Sal | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| SAT Chl | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| Sur Winds | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Summary

Shallow Eelgrass Sites

• Total zooplankton has significantly increased since 2007

• Copepods and annelids are the dominant groups
 – vary year to year in which groups blooms and intensity of the bloom

Deep Water Site

• Increasing trend of zooplankton but not significant

• Copepods and Larvaceans are the dominant groups
 – Little variation in annual pattern

Comparative Analysis

• Few consistencies between or among sites

• Inconclusive results with water quality and nutrient data
Take Home Messages

- COPEPOdite is a great tool for analysis
- Longer time-scale to pick up trends with abiotic factors
- Even with broad categories and limited resources, community trends can be detected