May 1st, 3:30 PM - 5:00 PM

Changes in Kelp and Other Seaweeds Following Elwha Dam Removal

Stephen Rubin
Geological Survey (U.S.), srubin@usgs.gov

Helen Berry
Washington (State). Department of Natural Resources

Nancy Elder

Ian Miller
Washington Sea Grant Program

Jeff Duda

See next page for additional authors

Follow this and additional works at: https://cedar.wwu.edu/ssec

Part of the Terrestrial and Aquatic Ecology Commons
Speaker
Stephen Rubin, Helen Berry, Nancy Elder, Ian Miller, Jeff Duda, Melissa Foley, Jonathan Warrick, Matt Beirne, Mike McHenry, and Rob Pedersen

This event is available at Western CEDAR: https://cedar.wwu.edu/ssec/2014ssec/Day2/268
Changes in Kelp and Other Seaweeds Following Elwha Dam Removal

Steve Rubin¹, Helen Berry², Nancy Elder³, Ian Miller⁴, Jeff Duda¹, Melissa Foley⁵, Jon Warrick⁵, Matt Beirne⁶, Mike McHenry⁶, Rob Pedersen⁷

¹USGS Western Fisheries Research Center
²WA Department of Natural Resources
³USGS WFRC Marrowstone Marine Station
⁴WA Sea Grant, Port Angeles WA
⁵USGS Pacific Coastal and Marine Science Center
⁶Lower Elwha Klallam Tribe
⁷USEPA Region 10 Environmental Cleanup Office
Nearshore Vegetation

- Diverse algae and seagrasses
- 3-D structure
- Important food source to local and distant ecosystems
Expected Changes

• Long-term
 – Shift toward soft sediment species

• Short-term
 – Turbidity
 – Scour
 – Burial
Floating Kelp Monitoring Methods (Since 1989)

Near-vertical aerial photography collected from small plane during a late summer low tide (7500’ MSL) with Nikon D200 digital 35mm DSLR camera. Hand delineated onto 1:12K basemaps.
Floating Kelp Canopy Area Changes Following Elwha Dam Removal

-53% (2011-2013)

Crescent Bay -54%
Tongue Pt – Observatory Pt -42%
Freshwater Bay -74%
Angeles Point – Elwha Bluffs -100%
Ediz Hook +14%
Dungeness Bluffs -7%
Dungeness Spit -42%

Floating Kelp
1989 - 2010
2011
2012
2013

Canopy Area (ha) -42% -74% -100% +14% -7% -42%

Tongue Pt - Observatory Pt
Freshwater Bay
Angeles Point – Elwha Bluffs
Ediz Hook
Dungeness Bluffs
Dungeness Spit

0 10 20 30 40 50 60 70
Underwater Transects Surveyed in 2010*, 2012 & 2013 from shallow to -15 m

* Thanks to Clallam County (Cathy Lear) and MRC (Jim Norris) for 2010 imagery.
Underwater Video Classification

- Vegetation Types
 - All macrovegetation
 - All kelp
 - Stipitate kelp
 - Prostrate kelp
 - Floating kelp
 - Non-kelp red/brown algae
 - Green algae
 - Seagrass

- Cover classes
 - Really Low <15%
 - Low 15-33%
 - Medium 33-66%
 - High 66-85%
 - Really High >85%

Mapping Unit ~ 1 m²
Directly east of the Elwha River mouth, -8 m (MLLW).
Major Decrease in Area with Vegetation Present, 2010-2013

- All Vegetation
- Red/brown (non-kelp)
- Kelp - all
- Kelp - prostrate
- Kelp - stipitate
- Seagrass

Weighted Linear regression
* p < 0.2
** p < 0.05
Strong Gradient

2010 Median Cover Kelp All
- Absent
- Trace
- < 15%
- 15 - 32%
- 33 - 65%
- 66 - 85%
- > 85%

2012 Median Cover Kelp All
- Absent
- Trace
- < 15%
- 15 - 32%
- 33 - 65%
- 66 - 85%
- > 85%

2013 Median Cover Kelp All
- Absent
- Trace
- < 15%
- 15 - 32%
- 33 - 65%
- 66 - 85%
- > 85%
Dive surveys

• Identify and count plants in 30 m x 1 m swaths
• Transect endpoint markers on seafloor: End pyramid, Center post
• Two transects per site
• Seasonal window: Late July-early September
• Surveys conducted annually at 17 sites:
 1 site: 2009-2013
 4 sites: 2010-2013
 9 sites: 2011-2013
 3 sites: 2009 (GPS only, no endpoint markers), 2012-2013
All kelp

- Density before dam removal
All kelp

- Percent change in density after dam removal
Kelp species

- Density before dam removal and in 2012 and 2013

[Graph showing density of different kelp species before and after dam removal in 2012 and 2013]
Kelp species

- Density before dam removal and in 2012 and 2013

<table>
<thead>
<tr>
<th>Species</th>
<th>Before</th>
<th>2012</th>
<th>2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agarum fimbriatum</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Alaria marginata</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Costaria costata</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Cymathere triplicata</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Laminaria setchellii</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Nereocystis luetkeana</td>
<td>2.5</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>Pleurophycus gardneri</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Pterygophora californica</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Saccharina spp</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>
Kelp species

- Density before dam removal and in 2012 and 2013

<table>
<thead>
<tr>
<th>Species</th>
<th>Before</th>
<th>2012</th>
<th>2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agarum fimbriatum</td>
<td>0.1</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Alaria marginata</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Costaria costata</td>
<td>0.1</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Cymathere triplicata</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Laminaria setchellii</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Nereocystis luetkeana</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Pleurophycus gardneri</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Pterygophora californica</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Saccharina spp</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Cymathere triplicata
Kelp species

- Density before dam removal and in 2012 and 2013

<table>
<thead>
<tr>
<th>Species</th>
<th>Before</th>
<th>2012</th>
<th>2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agarum fimbriatum</td>
<td>0.0</td>
<td>0.5</td>
<td>1.0</td>
</tr>
<tr>
<td>Pterygophora californica</td>
<td>0.5</td>
<td>2.0</td>
<td>2.5</td>
</tr>
<tr>
<td>Alaria marginata</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Costaria costata</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Cymathere triplicata</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Laminaria setchellii</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Nereocystis luetkeana</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Pleurophycus gardneri</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Pterygophora californica</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Saccharina spp</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>
Other seaweeds

• Also decreased after dam removal

• Acid kelp (*Desmarestia* spp):

• Red algae (*Rhodophyta*):

• Kelp + acid kelp + red algae = total vegetation
Unseasonal recruitment

- Juveniles appeared in late August 2013

Not present August 16

Present August 30
Unseasonal recruitment

• Species that typically recruit in spring:
 - Alaria marginata
 - Cymathere triplicata
 - Nereocystis luetkeana
 - Laminaria ephemera
 - Desmarestia “bushy”
 - Desmarestia “flat-bladed”

• Present at three sites:
Physical drivers

• Not “permanent” burial

Not buried

2012: 15 sites
2013: 11 sites

Buried

2012: 0 sites
2013: 4 sites
Physical drivers

- Not “permanent” burial

Gelfenbaum et al. in prep.
Physical drivers

• Ephemeral deposition
• Scour ("sandblasting")
• Light reduction

Photos from Jonathon Warrick
Chance to learn

- How does sedimentation affect kelp and other seaweeds?