May 2014

Size-selective mortality during freshwater and marine life stages of steelhead related to freshwater growth in the Skagit River, Washington

Jamie Thompson
R2 Resource Consultants, jamostomos@hotmail.com

Dave Beauchamp
Washington Cooperative Fish and Wildlife Research Unit

Follow this and additional works at: https://cedar.wwu.edu/ssec
Part of the Terrestrial and Aquatic Ecology Commons

This Event is brought to you for free and open access by the Conferences and Events at Western CEDAR. It has been accepted for inclusion in Salish Sea Ecosystem Conference by an authorized administrator of Western CEDAR. For more information, please contact westerncedar@wwu.edu.
Size-selective mortality of steelhead during freshwater and marine life stages related to freshwater growth in the Skagit River, Washington

Jamie N. Thompson
R2 Resource Consultants, Inc.
Redmond, WA

David A. Beauchamp
U.S. Geological Survey, Washington Cooperative Fish and Wildlife Research Unit
School of Aquatic and Fishery Sciences
University of Washington
Life stages and survival of steelhead

Embryo/alevin → Juveniles → Smolts → Adults

Freshwater → Marine
Size-selective mortality

Juvenile population size-at-annuli distribution

Survived to Smolt stage
Survived to Adult stage

Fork Length (mm)

Frequency (%)
Questions:

- Are faster-growing juveniles more likely to survive to later stages?

- Does size matter more in certain habitats?
Steelhead were sampled as:

- Juveniles (2011-2012; age 0-3)
- Smolts (2012; age 1-5)
- Adults (2008-2012; various ages)
Back-calculate size-at-annuli

\[FL = 176.7 \times (SR) + 12.0 \]

\[r^2 = 0.93 \]
Occurrence of size-selective mortality: 2-way ANOVA

Annulus-1:
Snow > Mixed (no interaction)
Juveniles < Smolts & Adults
= Freshwater SSM

Annulus-2:
Juveniles < Smolts < Adults
= Freshwater & Marine SSM

Annulus-3:
Juveniles & Smolts < Adults
= Freshwater & Marine SSM
Magnitude of size-selective mortality: K-S 2 Sample Test

Annulus-1:
Juveniles ≠ Smolts & Adults
Low-to-moderate Freshwater SSM

Annulus-2:
Juveniles ≠ Smolts ≠ Adults
High Freshwater & Marine SSM

Annulus-3:
Juveniles ≠ Smolts ≠ Adults
High Freshwater & Marine SSM
Conclusions

1) Size at annuli-2 and -3 strongly influences survival

1) Growth in natal habitats important, but we need more detailed evaluation of habitat effects on growth and survival

1) **Usefulness:** If SSM is significant, evaluating and improving growth in freshwater habitats could be useful tool for recovery
Acknowledgements

Funding: Fidalgo Chapter of Puget Sound Anglers, Seattle City Light, Upper Skagit Indian Tribe, and Wild Steelhead Coalition

Seattle City Light
Ed Connor and Dave Pflug

University of Washington
Christian Torgersen, Mark Sorel, Bryan Donahue, Adam Hansen, Verna Blackhurst, Erin Lowery, Allison McCoy, Iris Kemp, Megsie Siple, Casey Clark

Upper Skagit Indian Tribe
Jon-Paul Shannahahan, Tim Shelton, Josh Adams

Washington Department of Fish and Wildlife
Lance Campbell, Clayton Kinsel, Mara Zimmerman, Brett Barkdull, Lucinda Morrow
Measure of size-selective mortality: K-S 2 Sample Test

Annulus-1:
Juveniles ≠ Smolts & Adults

Annulus-2:
Juveniles ≠ Smolts ≠ Adults

Annulus-3:
Juveniles ≠ Smolts ≠ Adults
Larger smolt = Greater marine survival

Between final annulus and smolting...

<table>
<thead>
<tr>
<th>Precipitation Zone</th>
<th>n</th>
<th>FL at annulus-2 (mm)</th>
<th>FL at annulus-3 (mm)</th>
<th>Smolt Size (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smolted at age-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Snow</td>
<td>16</td>
<td>119 ± 3</td>
<td>-</td>
<td>146 ± 2</td>
</tr>
<tr>
<td>Mixed</td>
<td>84</td>
<td>120 ± 1</td>
<td>-</td>
<td>155 ± 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>120 ± 1</td>
<td></td>
<td>154 ± 2</td>
</tr>
<tr>
<td>Adult sample</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Snow</td>
<td>33</td>
<td>130 ± 2</td>
<td>-</td>
<td>159 ± 4</td>
</tr>
<tr>
<td>Mixed</td>
<td>75</td>
<td>130 ± 2</td>
<td>-</td>
<td>154 ± 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>130 ± 2</td>
<td></td>
<td>156 ± 2</td>
</tr>
<tr>
<td>Smolted at age-3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Snow</td>
<td>11</td>
<td>114 ± 3</td>
<td>151 ± 4</td>
<td>169 ± 5</td>
</tr>
<tr>
<td>Mixed</td>
<td>50</td>
<td>112 ± 2</td>
<td>155 ± 3</td>
<td>174 ± 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>113 ± 2</td>
<td>154 ± 2</td>
<td>173 ± 2</td>
</tr>
<tr>
<td>Adult sample</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Snow</td>
<td>6</td>
<td>118 ± 8</td>
<td>163 ± 8</td>
<td>177 ± 8</td>
</tr>
<tr>
<td>Mixed</td>
<td>55</td>
<td>115 ± 2</td>
<td>165 ± 3</td>
<td>181 ± 4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>115 ± 2</td>
<td>165 ± 3</td>
<td>181 ± 3</td>
</tr>
</tbody>
</table>

Smolt sample grew 22% in FL

Adult sample ONLY grew 16% in FL

Smolt sample grew 11% in FL

Adult sample ONLY grew 9% in FL