May 2nd, 10:30 AM - 12:00 PM

What Goes Down the Drain Eventually Reaches the River: Characterizing Contaminants of Emerging Concern (CECs) in the Columbia River Basin

Jennifer Morace
Geological Survey (U.S.), jlmorace@usgs.gov

Elena Nilsen
Geological Survey (U.S.)

Follow this and additional works at: https://cedar.wwu.edu/ssec

Part of the Terrestrial and Aquatic Ecology Commons

Morace, Jennifer and Nilsen, Elena, "What Goes Down the Drain Eventually Reaches the River: Characterizing Contaminants of Emerging Concern (CECs) in the Columbia River Basin" (2014). Salish Sea Ecosystem Conference. 65.

This Event is brought to you for free and open access by the Conferences and Events at Western CEDAR. It has been accepted for inclusion in Salish Sea Ecosystem Conference by an authorized administrator of Western CEDAR. For more information, please contact westerncedar@wwu.edu.
WHAT GOES DOWN THE DRAIN EVENTUALLY REACHES THE RIVER: CHARACTERIZING CONTAMINANTS OF EMERGING CONCERN IN THE COLUMBIA RIVER BASIN

Jennifer Morace, USGS Oregon Water Science Center
First Steps...

- Targeted at known knowledge gaps
- Characterize important pathways of contaminant transport to Columbia River
- Begin to offer information on a broad suite of toxics that will help water managers and policy makers make informed decisions

http://www.epa.gov/columbiariver
Columbia River Inputs Study

- Characterize pathways contributing directly to the Columbia River
 - WWTP effluent
 - Stormwater runoff
Contaminants analyzed in WWTP effluent

- Pharmaceuticals
- Anthropogenic-indicator compounds
- Organochlorine compounds
- PCBs
- PBDEs
- Mercury
- Currently used pesticides
- Estrogenicity
Contaminants measured in WWTP effluents

<table>
<thead>
<tr>
<th>Contaminant Type</th>
<th>Percent of Compounds Detected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plasticizers</td>
<td>4/4</td>
</tr>
<tr>
<td>Steroids</td>
<td>4/4</td>
</tr>
<tr>
<td>Detergent metabolites</td>
<td>7/8</td>
</tr>
<tr>
<td>Pharmaceuticals</td>
<td>50/59</td>
</tr>
<tr>
<td>Personal care products</td>
<td>12/15</td>
</tr>
<tr>
<td>PAHs</td>
<td>8/9</td>
</tr>
<tr>
<td>Flame retardants</td>
<td>14/17</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>14/17</td>
</tr>
<tr>
<td>PCBs</td>
<td>9/18</td>
</tr>
<tr>
<td>Pesticides</td>
<td>27/104</td>
</tr>
<tr>
<td>Overall</td>
<td>149/255</td>
</tr>
</tbody>
</table>

Note: The numbers represent the count of detected compounds over the total possible compounds.
Percent of detection at each WWTP sampled

<table>
<thead>
<tr>
<th></th>
<th>Total # analyzed</th>
<th>Wenatchee</th>
<th>Richland</th>
<th>Umatilla</th>
<th>The Dalles</th>
<th>Hood River</th>
<th>Vancouver</th>
<th>Portland (am)</th>
<th>Portland (noon)</th>
<th>Portland (pm)</th>
<th>St. Helens</th>
<th>Longview</th>
</tr>
</thead>
<tbody>
<tr>
<td>plasticizers</td>
<td>4</td>
<td>100</td>
<td>50</td>
<td>25</td>
<td>50</td>
<td>25</td>
<td>50</td>
<td>25</td>
<td>75</td>
<td>50</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>steroids</td>
<td>4</td>
<td>100</td>
<td>100</td>
<td>75</td>
<td>75</td>
<td>75</td>
<td>75</td>
<td>75</td>
<td>75</td>
<td>75</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>detergent</td>
<td>8</td>
<td>50</td>
<td>38</td>
<td>0</td>
<td>50</td>
<td>50</td>
<td>38</td>
<td>63</td>
<td>63</td>
<td>63</td>
<td>63</td>
<td>63</td>
</tr>
<tr>
<td>metabolites</td>
<td>8</td>
<td>50</td>
<td>38</td>
<td>0</td>
<td>50</td>
<td>50</td>
<td>38</td>
<td>63</td>
<td>63</td>
<td>63</td>
<td>63</td>
<td>63</td>
</tr>
<tr>
<td>pharmaceuticals</td>
<td>59</td>
<td>53</td>
<td>34</td>
<td>41</td>
<td>54</td>
<td>47</td>
<td>47</td>
<td>46</td>
<td>47</td>
<td>47</td>
<td>42</td>
<td>59</td>
</tr>
<tr>
<td>personal products</td>
<td>15</td>
<td>60</td>
<td>33</td>
<td>47</td>
<td>47</td>
<td>53</td>
<td>40</td>
<td>47</td>
<td>53</td>
<td>47</td>
<td>53</td>
<td>80</td>
</tr>
<tr>
<td>PAHs</td>
<td>9</td>
<td>0</td>
<td>11</td>
<td>0</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>22</td>
</tr>
<tr>
<td>flame retardants</td>
<td>17</td>
<td>82</td>
<td>76</td>
<td>76</td>
<td>82</td>
<td>82</td>
<td>82</td>
<td>82</td>
<td>82</td>
<td>82</td>
<td>82</td>
<td>65</td>
</tr>
<tr>
<td>miscellaneous</td>
<td>17</td>
<td>47</td>
<td>24</td>
<td>29</td>
<td>35</td>
<td>24</td>
<td>24</td>
<td>35</td>
<td>35</td>
<td>47</td>
<td>35</td>
<td>53</td>
</tr>
<tr>
<td>PCBs</td>
<td>18</td>
<td>44</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>pesticides</td>
<td>104</td>
<td>12</td>
<td>12</td>
<td>18</td>
<td>15</td>
<td>13</td>
<td>16</td>
<td>9</td>
<td>13</td>
<td>9</td>
<td>13</td>
<td>15</td>
</tr>
<tr>
<td>overall</td>
<td>255</td>
<td>37</td>
<td>25</td>
<td>28</td>
<td>33</td>
<td>29</td>
<td>30</td>
<td>29</td>
<td>32</td>
<td>30</td>
<td>33</td>
<td>40</td>
</tr>
</tbody>
</table>
Compounds found at all WWTPs
maximum concentrations shown in micrograms per liter (ppb)

- Tri(2-chloroethyl)phosphate – 0.65
- Tri(dichloroisopropyl)phosphate – 0.69
- Benzophenone – 0.28
- 1,4-Dichlorobenzene – 0.88
- Galaxolide (HHCB) – 2.5
- Cholesterol – E 6.3
- 3-beta-Coprostanol – E 5.8
- beta-Sitosterol – E 3.2
- PBDE congeners (47, 66, 85, 99, 100, 153, 154)
- trans-Chlordane – 0.00019

E = estimated
Pharmaceuticals found at all WWTPs

maximum concentrations shown in micrograms per liter (ppb)

- Iminostilbene – 0.4
- Citalopram (Celexa, Cipramil) – 0.5
- Diltiazem – 0.4
- Lidocaine – 0.4
- Methocarbamol (Robaxin) – 13
- Phenobarbital – 0.2
- Tramadol (Ultram) – 0.4
- Carbamazepine – 0.12
- Phenytoin (Dilantin) – 0.6
- Diphenhydramine (Benadryl, Motrin PM, …) – 0.11

Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government.
Diphenhydramine

- Antihistamine

- Uses
 - Relieves allergy and cold symptoms
 - Prevents and treats motion sickness
 - Treats insomnia
 - Controls abnormal movements (Parkinson’s syndrome)

- Products
 - 89 different brand names
 - 112 brand names for combination medications
Loadings to the Columbia

- Diphenhydramine in Portland
 - 49 mgd from WWTP
 - Average concentration of 0.064 µg/L
 - 10 g/day of diphenhydramine
 - 1 tablet = 25 mg
 - 400 tablets/day (16 boxes)

- Could lead to Columbia concentration of 0.001 µg/L

Idea of “pseudo-persistence”
Lessons learned

- The actions of society have an effect on the ecosystem.
- What goes down the drain reaches the river and the biota that rely on it. Not everything is cleaned up by the WWTP.
- Most stormwater is not treated.
Reconnaissance of Contaminants in Selected Wastewater-Treatment-Plant Effluent and Stormwater Runoff Entering the Columbia River, Columbia River Basin, Washington and Oregon, 2008–10

U.S. Department of the Interior
U.S. Geological Survey

Report available at
http://pubs.usgs.gov/sir/2012/5068
Columbia River Contaminants and Habitat Characterization

EDCs and PBDEs

http://www.youtube.com/watch?v=S2RlIbPLIGHg
Foodweb Sampling Design

Passive samplers
- contaminant analyses
- estrogen screen

Sediments
- contaminant analyses
- sediment transport modeling

Invertebrates
- contaminant analyses
- community assessment

Largescaler Suckers
- contaminant analyses
- biomarkers

(Organs and whole bodies)

Osprey
- contaminant analyses
- productivity assessment
- well bird blood analyses
Biomagnification in the food web

Science of the Total Environment, v. 484, pp. 319-389

Special Section: Foodweb Transfer, Sediment Transport, and Biological Effects of Emerging and Legacy Organic Contaminants in the Lower Columbia River, Oregon and Washington, USA

Elena Nilsen, enilsen@usgs.gov, 503.251.3277
THE VIAGRA IN THE WATER MAKES ME WANT TO SWIM UPSTREAM, BUT THE PROZAC IS MAKING ME TOO TIRED...

Questions?

Jennifer Morace
jlmorace@usgs.gov
503.251.3229