Size-selective mortality and bioenergetic limitations of juvenile steelhead under different freshwater environmental constraints in the Skagit River, Washington

Jamie Thompson
R2 Resource Consultants, jamostomos@hotmail.com

Dave Beauchamp
Washington Cooperative Fish and Wildlife Research Unit

Follow this and additional works at: https://cedar.wwu.edu/ssec
Part of the Terrestrial and Aquatic Ecology Commons

Thompson, Jamie and Beauchamp, Dave, "Size-selective mortality and bioenergetic limitations of juvenile steelhead under different freshwater environmental constraints in the Skagit River, Washington" (2014). Salish Sea Ecosystem Conference. 66.
Size-selective mortality and bioenergetic limitations of juvenile steelhead under different freshwater environmental constraints in the Skagit River, Washington

Jamie N. Thompson
R2 Resource Consultants, Inc.
Redmond, WA

David A. Beauchamp
U.S. Geological Survey, Washington Cooperative Fish and Wildlife Research Unit
School of Aquatic and Fishery Sciences
University of Washington
Early growth influences survival of steelhead.
Constraints on growth in freshwater

- **Sampled**: Food Ration
- **Estimated**: Feeding Rate
- **Sampled**: Water Temperature

Flow

LWD: Structure/Refuge

Substrate: Structure/Refuge

Predator Presence

Less-Optimal Foraging/Refuge

Optimal Foraging/Refuge
<table>
<thead>
<tr>
<th>Model Inputs</th>
<th>The Bioenergetics Model</th>
<th>Model Outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Thermal experience</td>
<td>Energy Out: Metabolism + Waste + Growth</td>
<td>Estimated Energy In (given observed Growth & other input values)</td>
</tr>
<tr>
<td>- Temporal diet composition</td>
<td></td>
<td>Estimated as...</td>
</tr>
<tr>
<td>- Consumer growth (G)</td>
<td></td>
<td>Feeding Rate ($%C_{max}$) or...</td>
</tr>
<tr>
<td>- Predator energy density</td>
<td></td>
<td>Consumption (g of prey/day)</td>
</tr>
<tr>
<td>- Prey energy density</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Data collection: Growth (FL-to-weight)

Juveniles

Smolts

Adults

Fork length (mm)
Adult sample: 25% C_{max}
Smolt sample: 24% C_{max}
Juvenile sample: 23% C_{max}

Adult sample: 27% C_{max}
Smolt sample: 25% C_{max}
No Juvenile sample

POOR DIET
65% of annual growth

73% annual growth

WEIGHT LOSS

4281

4293

3472

POOR DIET

3° C

Adult sample: 24% C_{max}
Smolt sample: 24% C_{max}
Juvenile sample: 22% C_{max}

Adult sample: 26% C_{max}
Smolt sample: 26% C_{max}
Juvenile sample: 26% C_{max}
49% of annual growth

HOT

LIMITED ACCESS TO QUALITY FEEDING HABITAT?

WIDE DISPARITY

GREAT DIET

WIDEDISPARITY

COLD

Adult sample: 25% C_{max}
Smolt sample: 22% C_{max}
Juvenile sample: 21% C_{max}

Adult sample: 28% C_{max}
Smolt sample: 25% C_{max}
Juvenile sample: 23% C_{max}
Conclusions

1) Early growth influences survival during later life stages

2) Water temperature, consumption, feeding rate, and prey energy density affect growth differently according to the local environment

3) **Usefulness**: If freshwater SSM is significant, evaluating and improving growth in freshwater habitats could be a useful tool for recovery

4) **Usefulness**: Bioenergetics modeling can help identify the main factors inhibiting growth
Acknowledgements

Funding: Fidalgo Chapter of Puget Sound Anglers, Seattle City Light, Upper Skagit Indian Tribe, and Wild Steelhead Coalition

Seattle City Light
Ed Connor and Dave Pflug

University of Washington
Christian Torgersen, Mark Sorel, Bryan Donahue, Ava Fuller, Verna Blackhurst, Adam Hansen, Collin Gross, Rebecca Anderson, Jeff Cordell, Erin Lowery, Allison McCoy, Iris Kemp, Megsie Siple, Casey Clark

Upper Skagit Indian Tribe
Jon-Paul Shannahan, Tim Shelton, Josh Adams

Washington Department of Fish and Wildlife
Lance Campbell, Clayton Kinsel, Mara Zimmerman, Brett Barkdull, Lucinda Morrow