Solving a supersolar + subsolar eclipsing binary with serendipitous photometry & spectroscopy
Research Mentor(s)
Covey, Kevin
Description
Eclipsing binary stars (EBs) are fundamental tools for understanding stellar evolution. Precise masses and radii can be measured for EBs, but these measurements typically require densely sampled light curves and radial velocities that identify the system's orbital period, velocity amplitude, and the morphology of the eclipse events. Historically, these observations have been time & resource intensive, but large scale photometric and spectroscopic surveys provide new opportunities to detect and characterize EBs with survey data alone. To demonstrate this capability, we calculated physical and orbital properties for 2M17091769+3127589, a 5.87 day binary. Using the ellc package to model the system's ASAS-SN light curve, we extracted radii and surface brightnesses of the system's components. Extracting radial velocities for each component from a series of 6 SDSS/APOGEE spectra, we measured the system's mass ratio before using The Joker to fit the full orbit. Our analysis indicates that 2M17091769+3127589 has a high mass ratio (m1/m2 = 5.68) and a supersolar primary (Mprim ~ 1.25 Msolar) with strong out-of-eclipse variations due to ellipsoidal distortions and/or spot effects. We report our full characterization of this system, and prospects for similar analyses using survey data to measure precise physical and orbital properties for EBs.
Document Type
Event
Start Date
18-5-2020 12:00 AM
End Date
22-5-2020 12:00 AM
Department
Physics and Astronomy
Genre/Form
student projects, posters
Event Website
Double stars--Observations; Astrophysics; Astrometry
Type
Image
Rights
Copying of this document in whole or in part is allowable only for scholarly purposes. It is understood, however, that any copying or publication of this document for commercial purposes, or for financial gain, shall not be allowed without the author’s written permission.
Language
English
Format
application/pdf
Solving a supersolar + subsolar eclipsing binary with serendipitous photometry & spectroscopy
Eclipsing binary stars (EBs) are fundamental tools for understanding stellar evolution. Precise masses and radii can be measured for EBs, but these measurements typically require densely sampled light curves and radial velocities that identify the system's orbital period, velocity amplitude, and the morphology of the eclipse events. Historically, these observations have been time & resource intensive, but large scale photometric and spectroscopic surveys provide new opportunities to detect and characterize EBs with survey data alone. To demonstrate this capability, we calculated physical and orbital properties for 2M17091769+3127589, a 5.87 day binary. Using the ellc package to model the system's ASAS-SN light curve, we extracted radii and surface brightnesses of the system's components. Extracting radial velocities for each component from a series of 6 SDSS/APOGEE spectra, we measured the system's mass ratio before using The Joker to fit the full orbit. Our analysis indicates that 2M17091769+3127589 has a high mass ratio (m1/m2 = 5.68) and a supersolar primary (Mprim ~ 1.25 Msolar) with strong out-of-eclipse variations due to ellipsoidal distortions and/or spot effects. We report our full characterization of this system, and prospects for similar analyses using survey data to measure precise physical and orbital properties for EBs.
https://cedar.wwu.edu/scholwk/2020/2020/16