Event Title
Semantic Pixel Distances for Image Editing
Research Mentor(s)
Wehrwein, Scott
Description
Many image editing techniques make processing decisions based on measures of similarity between pairs of pixels. Traditionally, pixel similarity is measured using a simple L2 distance on RGB or luminance values. In this work, we explore a richer notion of similarity based on feature embeddings learned by convolutional neural networks. We propose to measure pixel similarity by combining distance in a semantically-meaningful feature embedding with traditional color difference. Using semantic features from the penultimate layer of an off-the-shelf semantic segmentation model, we evaluate our distance measure in two image editing applications. A user study shows that incorporating semantic distances into content-aware resizing via seam carving produces improved results. Off-the-shelf semantic features are found to have mixed effectiveness in content-based range masking, suggesting that training better general-purpose pixel embeddings presents a promising future direction for creating semantically-meaningful feature spaces that can be used in a variety of applications.
Document Type
Event
Start Date
May 2020
End Date
May 2020
Department
Computer Science
Genre/Form
student projects, posters
Type
Image
Rights
Copying of this document in whole or in part is allowable only for scholarly purposes. It is understood, however, that any copying or publication of this document for commercial purposes, or for financial gain, shall not be allowed without the author’s written permission.
Language
English
Format
application/pdf
Semantic Pixel Distances for Image Editing
Many image editing techniques make processing decisions based on measures of similarity between pairs of pixels. Traditionally, pixel similarity is measured using a simple L2 distance on RGB or luminance values. In this work, we explore a richer notion of similarity based on feature embeddings learned by convolutional neural networks. We propose to measure pixel similarity by combining distance in a semantically-meaningful feature embedding with traditional color difference. Using semantic features from the penultimate layer of an off-the-shelf semantic segmentation model, we evaluate our distance measure in two image editing applications. A user study shows that incorporating semantic distances into content-aware resizing via seam carving produces improved results. Off-the-shelf semantic features are found to have mixed effectiveness in content-based range masking, suggesting that training better general-purpose pixel embeddings presents a promising future direction for creating semantically-meaningful feature spaces that can be used in a variety of applications.