Research Mentor(s)
Mike Larsen
Description
We describe studies of the thermal guanidine metathesis (TGM) reaction, a reversible transformation that results in exchange of N-substituents of the guanidine functional group. By comparing the effects of discrete structural variations, we find that steric congestion is an important factor in determining both the equilibrium guanidine composition and the reaction kinetics. The alkyl versus aryl nature of N-substitution also plays an essential role in the reaction rate, up to the point that minimal TGM reactivity is observed when the guanidine contains wholly alkyl substituents. Furthermore, we demonstrate that TGM occurs under thermodynamic control and present evidence that it proceeds by a dissociative mechanism, supported by direct observation of a carbodiimide intermediate.
Document Type
Event
Start Date
May 2022
End Date
May 2022
Location
Carver Gym (Bellingham, Wash.)
Department
CSE - Chemistry
Genre/Form
student projects; posters
Type
Image
Rights
Copying of this document in whole or in part is allowable only for scholarly purposes. It is understood, however, that any copying or publication of this document for commercial purposes, or for financial gain, shall not be allowed without the author’s written permission.
Language
English
Format
application/pdf
Thermodynamic, Kinetic, and Mechanistic Studies of the Thermal Guanidine Metathesis Reaction
Carver Gym (Bellingham, Wash.)
We describe studies of the thermal guanidine metathesis (TGM) reaction, a reversible transformation that results in exchange of N-substituents of the guanidine functional group. By comparing the effects of discrete structural variations, we find that steric congestion is an important factor in determining both the equilibrium guanidine composition and the reaction kinetics. The alkyl versus aryl nature of N-substitution also plays an essential role in the reaction rate, up to the point that minimal TGM reactivity is observed when the guanidine contains wholly alkyl substituents. Furthermore, we demonstrate that TGM occurs under thermodynamic control and present evidence that it proceeds by a dissociative mechanism, supported by direct observation of a carbodiimide intermediate.