Presentation Title

Broad-Scale Environmental Predictors of Intertidal Zonation of Z. japonica and Z. marina

Session Title

Session S-07E: Aquatic Vegetation

Conference Track

Habitat

Conference Name

Salish Sea Ecosystem Conference (2014 : Seattle, Wash.)

Contributing Repository

Digital content made available by University Archives, Heritage Resources, Western Libraries, Western Washington University.

Presenter/Author Information

Michael HannamFollow

Start Date

1-5-2014 5:00 PM

End Date

1-5-2014 6:30 PM

Abstract

Physical and biotic factors can influence the distribution of species at multiple scales, and are thus important when predicting invasive species impacts. I examined the influence of physical context and congener presence on variability the vertical zonation of an invasive seagrass, Z. japonica and its native congener Z. marina. Nearshore intertidal topography, hydrodynamic exposure, and tidal range were examined as abiotic predictors of the deep extents of Z. japonica and Z. marina, the shallow extent of Z. marina and the elevation overlap of the two species, both at within site and among site spatial scales. Z. marina’s extended to higher elevations at transects that were less rough, more gently-sloped, less wave exposed, and in the presence of Z. japonica. Site-scale rugosity was the best predictor of site scale shallow extent of Z. marina. Z. japonica deep extent was explained by Z. marina shallow extent at both spatial scales, and also by rugosity when examining site-averaged patterns. Overlap of the two species along a transect was poorly predicted by physical context, but site-averaged range overlap was greater where depth profiles were more linear. Bottom profile complexity was the most consistently important predictor studied, confirming the importance of the geomorphic template on the zonation of these species. Furthermore, these findings suggest a greater sensitivity of Z. marina shallow extent to physical factors, and a greater sensitivity of Z. japonica deep extent to biotic factors.

Rights

This resource is displayed for educational purposes only and may be subject to U.S. and international copyright laws. For more information about rights or obtaining copies of this resource, please contact University Archives, Heritage Resources, Western Libraries, Western Washington University, Bellingham, WA 98225-9103, USA (360-650-7534; heritage.resources@wwu.edu) and refer to the collection name and identifier. Any materials cited must be attributed to the Salish Sea Ecosystem Conference Records, University Archives, Heritage Resources, Western Libraries, Western Washington University.

Language

English

Format

application/pdf

Type

Text

This document is currently not available here.

Share

COinS
 
May 1st, 5:00 PM May 1st, 6:30 PM

Broad-Scale Environmental Predictors of Intertidal Zonation of Z. japonica and Z. marina

Room 6C

Physical and biotic factors can influence the distribution of species at multiple scales, and are thus important when predicting invasive species impacts. I examined the influence of physical context and congener presence on variability the vertical zonation of an invasive seagrass, Z. japonica and its native congener Z. marina. Nearshore intertidal topography, hydrodynamic exposure, and tidal range were examined as abiotic predictors of the deep extents of Z. japonica and Z. marina, the shallow extent of Z. marina and the elevation overlap of the two species, both at within site and among site spatial scales. Z. marina’s extended to higher elevations at transects that were less rough, more gently-sloped, less wave exposed, and in the presence of Z. japonica. Site-scale rugosity was the best predictor of site scale shallow extent of Z. marina. Z. japonica deep extent was explained by Z. marina shallow extent at both spatial scales, and also by rugosity when examining site-averaged patterns. Overlap of the two species along a transect was poorly predicted by physical context, but site-averaged range overlap was greater where depth profiles were more linear. Bottom profile complexity was the most consistently important predictor studied, confirming the importance of the geomorphic template on the zonation of these species. Furthermore, these findings suggest a greater sensitivity of Z. marina shallow extent to physical factors, and a greater sensitivity of Z. japonica deep extent to biotic factors.