Event Title

Changing seasonal transitions within the zooplankton community in the Padilla Bay National Estuarine Research Reserve.

Presentation Abstract

The importance of zooplankton as an indicator of ecosystem health and climate change is widely accepted, but remains an understudied component of many estuarine ecosystems. In 2008, we initiated a monthly zooplankton monitoring program at the Padilla Bay National Estuarine Research Reserve (NERR) to explore temporal and spatial patterns in abundance and community composition. Samples were collected at two sites located in channels draining eelgrass covered flats, and a third located in deep (20 m) water well beyond the subtidal edge of the eelgrass beds. Water quality parameters (i.e. temperature, salinity) and nutrient concentrations were also measured at each of these sites. Analysis of these data over an 8 year period reveal tremendous seasonal, interannual and spatial variability in community composition. Strong seasonal transitions of the dominant plankton groups (copepods, copepod nauplii, and larvaceans) at the deep water site were found. However, these patterns were disrupted in 2014 when Padilla Bay and the greater regional area experienced its highest temperatures, lowest salinities, and a positive PDO index. Despite these co-occurring anomalies, paired measures of water quality parameters were not good predictors of abundance or shifting community composition. Accordingly, we explore the effect of time lags and integrating water quality parameters over multiple temporal scales to help identify what regulates zooplankton communities in Padilla Bay NERR. Additionally, we explore the phenological shifts of the spring and fall peaks in zooplankton abundance in relation to changing environmental factors and the impact theses shifts may have on the food web and larval recruitment in Padilla Bay.

Session Title

Changes in Ecosystem Function and Climate Revealed by Long-term Monitoring in the Salish Sea

Conference Track

Climate Change and Ocean Acidification

Conference Name

Salish Sea Ecosystem Conference (2016 : Vancouver, B.C.)

Document Type

Event

Location

2016SSEC

Type of Presentation

Oral

Genre/Form

presentations (communicative events)

Contributing Repository

Digital content made available by University Archives, Heritage Resources, Western Libraries, Western Washington University.

Subjects – Topical (LCSH)

Water quality--Washington (State)--Padilla Bay National Estuarine Research Reserve; Zooplankton--Monitoring--Washington (State)--Padilla Bay National Estuarine Research Reserve; Climatic changes--Detection--Washington (State)--Padilla Bay National Estuarine Research Reserve

Geographic Coverage

Padilla Bay National Estuarine Research Reserve (Wash.); Salish Sea (B.C. and Wash.)

Rights

This resource is displayed for educational purposes only and may be subject to U.S. and international copyright laws. For more information about rights or obtaining copies of this resource, please contact University Archives, Heritage Resources, Western Libraries, Western Washington University, Bellingham, WA 98225-9103, USA (360-650-7534; heritage.resources@wwu.edu) and refer to the collection name and identifier. Any materials cited must be attributed to the Salish Sea Ecosystem Conference Records, University Archives, Heritage Resources, Western Libraries, Western Washington University.

Type

Text

Language

English

Format

application/pdf

This document is currently not available here.

COinS
 

Changing seasonal transitions within the zooplankton community in the Padilla Bay National Estuarine Research Reserve.

2016SSEC

The importance of zooplankton as an indicator of ecosystem health and climate change is widely accepted, but remains an understudied component of many estuarine ecosystems. In 2008, we initiated a monthly zooplankton monitoring program at the Padilla Bay National Estuarine Research Reserve (NERR) to explore temporal and spatial patterns in abundance and community composition. Samples were collected at two sites located in channels draining eelgrass covered flats, and a third located in deep (20 m) water well beyond the subtidal edge of the eelgrass beds. Water quality parameters (i.e. temperature, salinity) and nutrient concentrations were also measured at each of these sites. Analysis of these data over an 8 year period reveal tremendous seasonal, interannual and spatial variability in community composition. Strong seasonal transitions of the dominant plankton groups (copepods, copepod nauplii, and larvaceans) at the deep water site were found. However, these patterns were disrupted in 2014 when Padilla Bay and the greater regional area experienced its highest temperatures, lowest salinities, and a positive PDO index. Despite these co-occurring anomalies, paired measures of water quality parameters were not good predictors of abundance or shifting community composition. Accordingly, we explore the effect of time lags and integrating water quality parameters over multiple temporal scales to help identify what regulates zooplankton communities in Padilla Bay NERR. Additionally, we explore the phenological shifts of the spring and fall peaks in zooplankton abundance in relation to changing environmental factors and the impact theses shifts may have on the food web and larval recruitment in Padilla Bay.