Event Title

Nearshore Forage Fish Populations in the Context of Elwha River Dam Removals

Presentation Abstract

Removal of two dams on the Elwha River, Washington, is expected to help restore natural sediment processes to the coastal environment near the river mouth. Since 2006 we have been collecting data on shallow subtidal (nearshore) fish communities near the Elwha River and at reference sites in the Strait of Juan de Fuca to assess fish response to sediment changes resulting from dam removal. Ecologically important forage fish spawn and rear, and juvenile salmon migrate through these areas. Beach seine samples to date include 5 years pre-removal, 2 high impact years, and one year post-removal. Trends in species richness and abundance were consistent throughout, with reference areas possessing more species and overall abundance of fish than sites near the river mouth. Given the important role of forage fish in the ecosystem, both as plankton predators and as prey for marine fish including listed salmonids, we focused this analysis on population patterns within the forage fish community. Forage fish dominate our samples across years, but the influence of individual species varies, and can drive fish assemblage structure between sampling regions. We explored patterns of abundance in relation to dam removal, environmental variables, site characteristics, and season using a Bayesian hierarchical modeling framework and multivariate analyses. Forage fish abundance has increased at sampling sites since dam removal; Pacific Herring (Clupea pallasii), Night Smelt (Spirinchus starksi), and Pacific Sand Lance (Ammodytes hexapterus) have shown the greatest increases over all areas. Though variable, overall abundance of forage fish increased more following dam removal within the impacted region than within the reference regions. We will continue to monitor nearshore fish populations in this region, including use of genetics and stable isotopes to explore forage fish population structure, as the system evolves towards a more natural sediment regime and material distributes from the Elwha River watershed.

Session Title

Forage Fish Management and Conservation in the Salish Sea

Conference Track

Species and Food Webs

Conference Name

Salish Sea Ecosystem Conference (2016 : Vancouver, B.C.)

Document Type

Event

Start Date

2016 12:00 AM

End Date

2016 12:00 AM

Location

2016SSEC

Type of Presentation

Poster

Genre/Form

conference proceedings; presentations (communicative events)

Contributing Repository

Digital content made available by University Archives, Heritage Resources, Western Libraries, Western Washington University.

Subjects – Topical (LCSH)

Forage fishes--Effect of dams on--Washington (State)--Olympic Peninsula; Salmonidae--Effect of dams on--Washington (State)--Olympic Peninsula; Coastal ecology--Washington (State)--Olympic Peninsula

Geographic Coverage

Salish Sea (B.C. and Wash.); Olympic Peninsula (Wash.)

Rights

This resource is displayed for educational purposes only and may be subject to U.S. and international copyright laws. For more information about rights or obtaining copies of this resource, please contact University Archives, Heritage Resources, Western Libraries, Western Washington University, Bellingham, WA 98225-9103, USA (360-650-7534; heritage.resources@wwu.edu) and refer to the collection name and identifier. Any materials cited must be attributed to the Salish Sea Ecosystem Conference Records, University Archives, Heritage Resources, Western Libraries, Western Washington University.

Type

Text

Language

English

Format

application/pdf

This document is currently not available here.

COinS
 
Jan 1st, 12:00 AM Jan 1st, 12:00 AM

Nearshore Forage Fish Populations in the Context of Elwha River Dam Removals

2016SSEC

Removal of two dams on the Elwha River, Washington, is expected to help restore natural sediment processes to the coastal environment near the river mouth. Since 2006 we have been collecting data on shallow subtidal (nearshore) fish communities near the Elwha River and at reference sites in the Strait of Juan de Fuca to assess fish response to sediment changes resulting from dam removal. Ecologically important forage fish spawn and rear, and juvenile salmon migrate through these areas. Beach seine samples to date include 5 years pre-removal, 2 high impact years, and one year post-removal. Trends in species richness and abundance were consistent throughout, with reference areas possessing more species and overall abundance of fish than sites near the river mouth. Given the important role of forage fish in the ecosystem, both as plankton predators and as prey for marine fish including listed salmonids, we focused this analysis on population patterns within the forage fish community. Forage fish dominate our samples across years, but the influence of individual species varies, and can drive fish assemblage structure between sampling regions. We explored patterns of abundance in relation to dam removal, environmental variables, site characteristics, and season using a Bayesian hierarchical modeling framework and multivariate analyses. Forage fish abundance has increased at sampling sites since dam removal; Pacific Herring (Clupea pallasii), Night Smelt (Spirinchus starksi), and Pacific Sand Lance (Ammodytes hexapterus) have shown the greatest increases over all areas. Though variable, overall abundance of forage fish increased more following dam removal within the impacted region than within the reference regions. We will continue to monitor nearshore fish populations in this region, including use of genetics and stable isotopes to explore forage fish population structure, as the system evolves towards a more natural sediment regime and material distributes from the Elwha River watershed.