Presentation Abstract

Population-level endpoints provide ecological relevance to Ecological Risk Assessments (ERAs), because this is the level at which environmental management decisions are made. However, many population-level risk assessments do not reflect the spatial and temporal heterogeneity of the populations they represent, and thus preclude an understanding of how population dynamics and viability are affected by toxicants on a regional scale. We have developed a probabilistic ERA (specifically, a Bayesian Network-Relative Risk Model (BN-RRM)) that integrates an Adverse Outcome Pathway (AOP) framework, to quantify the sub-lethal and lethal effects of toxicants and environmental stressors on the metapopulation dynamics of salmonids. As a case study for developing this model, we have examined the impacts of organophosphate (OP) insecticides, water temperature, and dissolved oxygen on the Spring Chinook (Oncorhynchus tshawytscha) salmon metapopulation in the Yakima River Basin (YRB), Washington. A stochastic Matrix Metapopulation Model was developed using demographic data for three Spring Chinook salmon populations and one supplemental hatchery population in the YRB. Site specific data on OP contaminated habitats utilized by various salmonid life stages were incorporated into the metapopulation model by incrementally reducing survival parameters based on levels of exposure. Exposure scenarios were simulated for 200 replications of 50-year population projections using RAMAS Metapop©, and the results were incorporated into the BN-RRM. The results of this modeling effort indicated that small, wild Spring Chinook populations in the YRB have a greater probability of altered population dynamics when exposed to stressors than larger, supplemented populations. Additionally, the results indicated a seasonal effect of the stressors, with summer conditions posing a greater risk to salmon populations than winter conditions. This probabilistic ERA framework shows promise for estimating the spatiotemporal impacts of stressors on ESA-listed species (i.e., Pacific salmon) at the metapopulation level, where population dynamics and spatial structure create complex risk dynamics.

Session Title

Modeling the Effects of Pesticides, Toxicants, and Multiple Stressors on the Fish Populations and Ecological Communities of the Salish Sea

Keywords

Population modeling, Metapopulations, Pesticides, Ecological Risk Assessment

Conference Track

SSE3: Fate, Transport, and Toxicity of Chemicals

Conference Name

Salish Sea Ecosystem Conference (Seattle, WA : 2018)

Document Type

Event

SSEC Identifier

SSE3-289

Start Date

5-4-2018 10:30 AM

End Date

5-4-2018 10:45 AM

Type of Presentation

Oral

Contributing Repository

Digital content made available by University Archives, Heritage Resources, Western Libraries, Western Washington University.

Geographic Coverage

Salish Sea (B.C. and Wash.)

Rights

This resource is displayed for educational purposes only and may be subject to U.S. and international copyright laws. For more information about rights or obtaining copies of this resource, please contact University Archives, Heritage Resources, Western Libraries, Western Washington University, Bellingham, WA 98225-9103, USA (360-650-7534; heritage.resources@wwu.edu) and refer to the collection name and identifier. Any materials cited must be attributed to the Salish Sea Ecosystem Conference Records, University Archives, Heritage Resources, Western Libraries, Western Washington University.

Type

text

Language

English

Format

application/pdf

Share

COinS
 
Apr 5th, 10:30 AM Apr 5th, 10:45 AM

Using metapopulation models to estimate the effects of pesticides and environmental stressors to Spring Chinook salmon in the Yakima River Basin, WA

Population-level endpoints provide ecological relevance to Ecological Risk Assessments (ERAs), because this is the level at which environmental management decisions are made. However, many population-level risk assessments do not reflect the spatial and temporal heterogeneity of the populations they represent, and thus preclude an understanding of how population dynamics and viability are affected by toxicants on a regional scale. We have developed a probabilistic ERA (specifically, a Bayesian Network-Relative Risk Model (BN-RRM)) that integrates an Adverse Outcome Pathway (AOP) framework, to quantify the sub-lethal and lethal effects of toxicants and environmental stressors on the metapopulation dynamics of salmonids. As a case study for developing this model, we have examined the impacts of organophosphate (OP) insecticides, water temperature, and dissolved oxygen on the Spring Chinook (Oncorhynchus tshawytscha) salmon metapopulation in the Yakima River Basin (YRB), Washington. A stochastic Matrix Metapopulation Model was developed using demographic data for three Spring Chinook salmon populations and one supplemental hatchery population in the YRB. Site specific data on OP contaminated habitats utilized by various salmonid life stages were incorporated into the metapopulation model by incrementally reducing survival parameters based on levels of exposure. Exposure scenarios were simulated for 200 replications of 50-year population projections using RAMAS Metapop©, and the results were incorporated into the BN-RRM. The results of this modeling effort indicated that small, wild Spring Chinook populations in the YRB have a greater probability of altered population dynamics when exposed to stressors than larger, supplemented populations. Additionally, the results indicated a seasonal effect of the stressors, with summer conditions posing a greater risk to salmon populations than winter conditions. This probabilistic ERA framework shows promise for estimating the spatiotemporal impacts of stressors on ESA-listed species (i.e., Pacific salmon) at the metapopulation level, where population dynamics and spatial structure create complex risk dynamics.