Presentation Abstract

Local, state, federal, tribal and private stakeholders have committed significant resources to restoring Puget Sound’s terrestrial-marine ecosystem. Though jurisdictional issues have promoted a fragmented approach to restoration planning, there is growing recognition that a more coordinated systems-based restoration approach is needed to achieve recovery goals. This presentation describes our collaborative effort to develop and apply an integrated environmental and human systems modeling framework for the Puget Sound Basin, inclusive of all marine and land areas (1,020 and 12,680 sq. mi.). Our goal is to establish a whole-basin systems modeling framework that dynamically simulates biophysical interactions and transfers (water, nutrients, contaminants, biota) across terrestrial-marine boundaries. The core environmental models include a terrestrial ecohydrological model (VELMA), an ocean circulation and biogeochemistry model (Salish Sea Model), and an ocean food web model (Atlantis). This environmental subsystem will be linked with an agent-based modeling subsystem (e.g., Envision) that allows human decision-makers to be represented in whole-basin simulations. The integrated environmental and human systems framework aims to facilitate discourse among different stakeholders and decision makers (agents) and enable them play out the ecological, social and economic consequences of alternative ecosystem restoration choices. All of these models are currently being applied in Puget Sound, but they have not yet been integrated. The linked models will better capture the propagation of human impacts throughout the terrestrial-marine ecosystem, and thereby provide a more effective decision support tool for addressing restoration of high priority environmental endpoints, such as the Vital Signs identified by the Puget Sound Partnership (http://www.psp.wa.gov/vitalsigns/). Our overview will include examples of existing stand-alone model applications, and conceptual plans for linking models across terrestrial-marine boundaries. The Puget Sound multi-model framework described here can potentially be expanded to address the entire Salish Sea transboundary ecosystem (https://www.eopugetsound.org/maps/salish-sea-basin-and-water-boundaries).

Session Title

Modeling Change in the Transboundary Salish Sea

Keywords

Modeling, Terrestrial-marine, Puget Sound, Restoration, Velma, Salish Sea model, Atlantis

Conference Track

SSE15: Data and Information Management

Conference Name

Salish Sea Ecosystem Conference (Seattle, WA : 2018)

Document Type

Event

SSEC Identifier

SSE15-278

Start Date

5-4-2018 2:45 PM

End Date

5-4-2018 3:00 PM

Type of Presentation

Oral

Contributing Repository

Digital content made available by University Archives, Heritage Resources, Western Libraries, Western Washington University.

Geographic Coverage

Salish Sea (B.C. and Wash.)

Rights

This resource is displayed for educational purposes only and may be subject to U.S. and international copyright laws. For more information about rights or obtaining copies of this resource, please contact University Archives, Heritage Resources, Western Libraries, Western Washington University, Bellingham, WA 98225-9103, USA (360-650-7534; heritage.resources@wwu.edu) and refer to the collection name and identifier. Any materials cited must be attributed to the Salish Sea Ecosystem Conference Records, University Archives, Heritage Resources, Western Libraries, Western Washington University.

Type

text

Language

English

Format

application/pdf

Share

COinS
 
Apr 5th, 2:45 PM Apr 5th, 3:00 PM

An integrated environmental and human systems modeling framework for Puget Sound restoration planning

Local, state, federal, tribal and private stakeholders have committed significant resources to restoring Puget Sound’s terrestrial-marine ecosystem. Though jurisdictional issues have promoted a fragmented approach to restoration planning, there is growing recognition that a more coordinated systems-based restoration approach is needed to achieve recovery goals. This presentation describes our collaborative effort to develop and apply an integrated environmental and human systems modeling framework for the Puget Sound Basin, inclusive of all marine and land areas (1,020 and 12,680 sq. mi.). Our goal is to establish a whole-basin systems modeling framework that dynamically simulates biophysical interactions and transfers (water, nutrients, contaminants, biota) across terrestrial-marine boundaries. The core environmental models include a terrestrial ecohydrological model (VELMA), an ocean circulation and biogeochemistry model (Salish Sea Model), and an ocean food web model (Atlantis). This environmental subsystem will be linked with an agent-based modeling subsystem (e.g., Envision) that allows human decision-makers to be represented in whole-basin simulations. The integrated environmental and human systems framework aims to facilitate discourse among different stakeholders and decision makers (agents) and enable them play out the ecological, social and economic consequences of alternative ecosystem restoration choices. All of these models are currently being applied in Puget Sound, but they have not yet been integrated. The linked models will better capture the propagation of human impacts throughout the terrestrial-marine ecosystem, and thereby provide a more effective decision support tool for addressing restoration of high priority environmental endpoints, such as the Vital Signs identified by the Puget Sound Partnership (http://www.psp.wa.gov/vitalsigns/). Our overview will include examples of existing stand-alone model applications, and conceptual plans for linking models across terrestrial-marine boundaries. The Puget Sound multi-model framework described here can potentially be expanded to address the entire Salish Sea transboundary ecosystem (https://www.eopugetsound.org/maps/salish-sea-basin-and-water-boundaries).