Presentation Abstract

Elevated levels of CO2 have been shown to disrupt numerous neurological sensory systems in marine fish. This is of concern as Pacific salmon rely heavily on an important neurosensory system for survival, the olfactory system. In this study, we investigated the effects of elevated CO2 on a salmon olfactory driven behavior, as well as changes in neural signaling and gene expression within the peripheral and central olfactory system. Juvenile coho salmon were exposed to three different levels of CO2 for two weeks. These included a current CO2 level with a pH of 7.8, a medium CO2 level with a pH of 7.5, and a high CO2 level with a pH of 7.2. Our study found that juvenile coho salmon exposed to increasing levels of CO2 ceased avoiding an alarm odor compared to the controls. Furthermore, exposure to the high level of CO2 did not alter odorant induced signaling in the olfactory rosettes but did induce significant changes in signaling within the olfactory bulbs. RNA-seq analysis revealed significant changes in expression of genes involved in neuronal signaling and signal modulation within the olfactory bulbs from coho exposed to the high CO2 level compared to control coho. Our results indicate that coho salmon exposed to elevated CO2 can experience significant behavioral impairments that are potentially driven by alteration in higher-order neural signal processing within the olfactory bulbs. Supported by Washington Sea Grant, the Washington Ocean Acidification Center, and NIEHS Superfund ES-004696.

Session Title

Ocean Acidification: Effects and Interactions with Organisms

Keywords

Ocean acidification, Salmon, Olfaction, GABA, Behavior

Conference Track

SSE5: Climate Change: Impacts, Adaptation, and Research

Conference Name

Salish Sea Ecosystem Conference (2018 : Seattle, Wash.)

Document Type

Event

SSEC Identifier

SSE5-233

Start Date

5-4-2018 3:30 PM

End Date

5-4-2018 3:45 PM

Type of Presentation

Oral

Genre/Form

conference proceedings; presentations (communicative events)

Contributing Repository

Digital content made available by University Archives, Heritage Resources, Western Libraries, Western Washington University.

Subjects – Topical (LCSH)

Carbon dioxide--Physiological effect--Salish Sea (B.C. and Wash.); Coho salmon--Behavior--Salish Sea (B.C. and Wash.); Neural transmission--Disorders--Salish Sea (B.C. and Wash.); Ocean acidification--Salish Sea (B.C. and Wash.); Olfactory sensors--Salish Sea (B.C. and Wash.)

Subjects – Names (LCNAF)

Washington Sea Grant Program

Geographic Coverage

Salish Sea (B.C. and Wash.)

Rights

This resource is displayed for educational purposes only and may be subject to U.S. and international copyright laws. For more information about rights or obtaining copies of this resource, please contact University Archives, Heritage Resources, Western Libraries, Western Washington University, Bellingham, WA 98225-9103, USA (360-650-7534; heritage.resources@wwu.edu) and refer to the collection name and identifier. Any materials cited must be attributed to the Salish Sea Ecosystem Conference Records, University Archives, Heritage Resources, Western Libraries, Western Washington University.

Type

Text

Language

English

Format

application/pdf

COinS
 
Apr 5th, 3:30 PM Apr 5th, 3:45 PM

Elevated carbon dioxide alters neural signaling and anti-predator behaviors in ocean phase coho salmon (Oncorhynchus kisutch)

Elevated levels of CO2 have been shown to disrupt numerous neurological sensory systems in marine fish. This is of concern as Pacific salmon rely heavily on an important neurosensory system for survival, the olfactory system. In this study, we investigated the effects of elevated CO2 on a salmon olfactory driven behavior, as well as changes in neural signaling and gene expression within the peripheral and central olfactory system. Juvenile coho salmon were exposed to three different levels of CO2 for two weeks. These included a current CO2 level with a pH of 7.8, a medium CO2 level with a pH of 7.5, and a high CO2 level with a pH of 7.2. Our study found that juvenile coho salmon exposed to increasing levels of CO2 ceased avoiding an alarm odor compared to the controls. Furthermore, exposure to the high level of CO2 did not alter odorant induced signaling in the olfactory rosettes but did induce significant changes in signaling within the olfactory bulbs. RNA-seq analysis revealed significant changes in expression of genes involved in neuronal signaling and signal modulation within the olfactory bulbs from coho exposed to the high CO2 level compared to control coho. Our results indicate that coho salmon exposed to elevated CO2 can experience significant behavioral impairments that are potentially driven by alteration in higher-order neural signal processing within the olfactory bulbs. Supported by Washington Sea Grant, the Washington Ocean Acidification Center, and NIEHS Superfund ES-004696.