Presentation Abstract

As climate change becomes a reality for the management of Puget Sound, water resource and fisheries managers should consider incorporating predictions and outcomes of future climate drivers into their long-range plans and daily operations. Modeling tools that focus on climate impacts and predictions show that extreme events are more often responsible for large impacts than the long-term press of climate change. Working with water resource and fisheries managers in the Dungeness and Skagit watersheds, this project uses outputs of existing climate and estuarine models to define thresholds and metrics associated with extreme climate-driven events that are of importance to the resource managers. Managers from the Dungeness and Skagit basins were brought together to assist with defining information needs for sustainable fish habitat and human water uses. The resource managers participating in the project include municipal waste water treatment operators and planners, fisheries managers, agricultural practitioners and conservation district staff, flood control specialists, and others. The information needs identified by the planners, based on the climate model outputs, include better predictions for low stream flows, stream temperature, extent of salinity intrusion into tidal rivers, and timing of extreme events that fall outside the historical norm. The project is developing a decision-support system to meet these needs. The metrics used to drive the decision-support system are derived from model outputs, driven by resource management needs. The information needs, metrics derived from existing models, and the draft decision-support system will be presented. The research team also seeks to use the project to define improved communication pathways between the scientific community and local managers.

Session Title

Integrated Coastal Climate Change Modeling for Salish Sea Planning: Part II

Keywords

Climate change, Extreme events, Stakeholders

Conference Track

SSE5: Climate Change: Impacts, Adaptation, and Research

Conference Name

Salish Sea Ecosystem Conference (Seattle, WA : 2018)

Document Type

Event

SSEC Identifier

SSE5-322

Start Date

6-4-2018 1:45 PM

End Date

6-4-2018 2:00 PM

Type of Presentation

Oral

Contributing Repository

Digital content made available by University Archives, Heritage Resources, Western Libraries, Western Washington University.

Geographic Coverage

Salish Sea (B.C. and Wash.)

Rights

This resource is displayed for educational purposes only and may be subject to U.S. and international copyright laws. For more information about rights or obtaining copies of this resource, please contact University Archives, Heritage Resources, Western Libraries, Western Washington University, Bellingham, WA 98225-9103, USA (360-650-7534; heritage.resources@wwu.edu) and refer to the collection name and identifier. Any materials cited must be attributed to the Salish Sea Ecosystem Conference Records, University Archives, Heritage Resources, Western Libraries, Western Washington University.

Type

text

Language

English

Format

application/pdf

Share

COinS
 
Apr 6th, 1:45 PM Apr 6th, 2:00 PM

Providing modeling tools on extreme events of climate change to Puget Sound managers

As climate change becomes a reality for the management of Puget Sound, water resource and fisheries managers should consider incorporating predictions and outcomes of future climate drivers into their long-range plans and daily operations. Modeling tools that focus on climate impacts and predictions show that extreme events are more often responsible for large impacts than the long-term press of climate change. Working with water resource and fisheries managers in the Dungeness and Skagit watersheds, this project uses outputs of existing climate and estuarine models to define thresholds and metrics associated with extreme climate-driven events that are of importance to the resource managers. Managers from the Dungeness and Skagit basins were brought together to assist with defining information needs for sustainable fish habitat and human water uses. The resource managers participating in the project include municipal waste water treatment operators and planners, fisheries managers, agricultural practitioners and conservation district staff, flood control specialists, and others. The information needs identified by the planners, based on the climate model outputs, include better predictions for low stream flows, stream temperature, extent of salinity intrusion into tidal rivers, and timing of extreme events that fall outside the historical norm. The project is developing a decision-support system to meet these needs. The metrics used to drive the decision-support system are derived from model outputs, driven by resource management needs. The information needs, metrics derived from existing models, and the draft decision-support system will be presented. The research team also seeks to use the project to define improved communication pathways between the scientific community and local managers.