The vast majority of theses in this collection are open access and freely available. There are a small number of theses that have access restricted to the WWU campus. For off-campus access to a thesis labeled "Campus Only Access," please log in here with your WWU universal ID, or talk to your librarian about requesting the restricted thesis through interlibrary loan.

Date Permissions Signed

3-12-2020

Date of Award

Winter 2020

Document Type

Masters Thesis

Department or Program Affiliation

Chemistry

Degree Name

Master of Science (MS)

Department

Chemistry

First Advisor

Patrick, David L.

Second Advisor

Leger, Janelle

Third Advisor

Emory, Steven R.

Abstract

Control over the size, shape, topology, orientation, and crystallographic phase of organic molecular materials is critical for a wide array of applications ranging from optoelectronics to pharmaceutical development. Herein, we demonstrate a relatively low-cost approach for fabricating single crystals with controlled sizes, shapes, microscale periodic features, preferred orientations and specific molecular packing modes. These features allow for the fabrication of intricate arrangements of single crystals for incorporation into complex device architectures, and potentially the endowment of tailored optical, electronic, thermal, and mechanical properties onto these materials. Patterning is achieved by utilizing an organic-vapor-liquid-solid (OVLS) deposition scheme paired with traditional photolithography methods. The OVLS approach involves spin coating a layer of a low vapor pressure solvent onto a substrate in order to drive up the critical nucleus size required for crystal nucleation, resulting in large grain sizes. This substrate is placed above a hot plate with the organic material to be sublimed. Our results show that millimeter-scale, ultrathin, planar organic molecular crystals can be grown on patterned substrates with rudimentary equipment (hot plate, spin coater, photoresist, photomask, UV source). We show that this technique is not only compatible with organic semiconductors, but also other organic molecular crystals such as pharmaceuticals.

Type

Text

Keywords

Organic molecular crystals, crystal engineering, organic semiconductor, topology, photonic crystals, polymorphism

Publisher

Western Washington University

OCLC Number

1145028582

Subject – LCSH

Molecular crystals--Research; Crystal growth; Semiconductor films; Organic solid state chemistry

Format

application/pdf

Genre/Form

masters thesis

Language

English

Rights

Copying of this document in whole or in part is allowable only for scholarly purposes. It is understood, however, that any copying or publication of this document for commercial purposes, or for financial gain, shall not be allowed without the author’s written permission.

Available for download on Sunday, September 13, 2020

Included in

Chemistry Commons

Share

COinS