Type of Presentation

Oral

Session Title

Changes in Ecosystem Function and Climate Revealed by Long-term Monitoring in the Salish Sea

Description

To what degree will climate change affect seagrass productivity, abundance and distribution in Puget Sound and other northwest systems? While the widespread global distribution of eelgrass and its ability to recover from large-scale disturbances suggests a relatively high level of adaptability and resilience, complex ecological interactions make reliable predictions of the effect of climate variation and change on eelgrass difficult. We have been using field measurements of density and growth rate over several decades, physiological experiments, and numerical modeling coupled with natural experiments associated with anomalous climatic and ocean conditions to formulate broad hypotheses. These data have shown that: (1) inter-annual variation in growth, density and biomass is affected by variable sea level, water temperature and light conditions; (2) these interactions are complex and dependent upon the system; (3) highly anomalous conditions (e.g., ENSO; droughts) that persist for more than one year may drive a system-wide collapse of eelgrass to a point were recovery is severely protracted; (4) local disturbances (e.g., eutrophication; turbidity; grazing) can interact with climate variation to exacerbate unfavorable conditions; and, (5) success of efforts to restore eelgrass may be hampered by a severely altered system state. We conclude that eelgrass is resilient to moderate to strong climatic variations lasting a few years, but is susceptible to collapse and extirpation when extreme, unprecedented climatic conditions persist over a similar time period.

This document is currently not available here.

Share

COinS
 

Eelgrass Resilience and Climate Change in Puget Sound

2016SSEC

To what degree will climate change affect seagrass productivity, abundance and distribution in Puget Sound and other northwest systems? While the widespread global distribution of eelgrass and its ability to recover from large-scale disturbances suggests a relatively high level of adaptability and resilience, complex ecological interactions make reliable predictions of the effect of climate variation and change on eelgrass difficult. We have been using field measurements of density and growth rate over several decades, physiological experiments, and numerical modeling coupled with natural experiments associated with anomalous climatic and ocean conditions to formulate broad hypotheses. These data have shown that: (1) inter-annual variation in growth, density and biomass is affected by variable sea level, water temperature and light conditions; (2) these interactions are complex and dependent upon the system; (3) highly anomalous conditions (e.g., ENSO; droughts) that persist for more than one year may drive a system-wide collapse of eelgrass to a point were recovery is severely protracted; (4) local disturbances (e.g., eutrophication; turbidity; grazing) can interact with climate variation to exacerbate unfavorable conditions; and, (5) success of efforts to restore eelgrass may be hampered by a severely altered system state. We conclude that eelgrass is resilient to moderate to strong climatic variations lasting a few years, but is susceptible to collapse and extirpation when extreme, unprecedented climatic conditions persist over a similar time period.